-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathcheck_convergence.py
128 lines (97 loc) · 7.37 KB
/
check_convergence.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
import argparse
import h5py
import multiprocessing as mp
import numpy as np
import os
import sys
import tensorflow as tf
import time
backend ='TkAgg'
import matplotlib
matplotlib.use(backend)
import matplotlib.pyplot as plt
matplotlib.use('TkAgg')
from contexttimer import Timer
import hgail.misc.simulation
import hgail.misc.utils
import hyperparams
import utils
from utils import str2bool
import rls, pdb
import validate_utils
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='validation settings')
parser.add_argument('--n_proc', type=int, default=1)
parser.add_argument('--exp_dir', type=str, default='../../data/experiments/multiagent_curr/')
parser.add_argument('--params_filename', type=str, default='itr_200.npz')
parser.add_argument('--n_runs_per_ego_id', type=int, default=10)
parser.add_argument('--use_hgail', type=str2bool, default=False)
parser.add_argument('--use_multiagent', type=str2bool, default=True)
parser.add_argument('--n_multiagent_trajs', type=int, default=10000)
parser.add_argument('--debug', type=str2bool, default=False)
parser.add_argument('--random_seed', type=int, default=None)
parser.add_argument('--n_envs', type=int, default=1)
parser.add_argument('--remove_ngsim_vehicles', type=str2bool, default=False)
run_args = parser.parse_args()
args_filepath = os.path.join(run_args.exp_dir, 'imitate/log/args.npz')
args = hyperparams.load_args(args_filepath)
if run_args.use_multiagent:
args.env_multiagent = True
args.remove_ngsim_vehicles = run_args.remove_ngsim_vehicles
filenames = [
"trajdata_i101_trajectories-0750am-0805am.txt"
]
# batch_size=100, critic_batch_size=1000, critic_dropout_keep_prob=0.8, critic_grad_rescale=40.0, critic_hidden_layer_dims=(128, 128, 64), critic_learning_rate=0.0004, decay_reward=False, discount=0.99, do_curriculum=False, env_H=200, env_action_repeat=1, env_multiagent=True, env_primesteps=50, env_reward=0, exp_dir='../../data/experiments', exp_name='multiagent_curr_1_{}', expert_filepath='../../data/trajectories/ngsim.h5', gradient_penalty=2.0, itrs_per_decay=25, latent_dim=4, load_params_init='NONE', max_path_length=1000, n_critic_train_epochs=40, n_envs=1, n_envs_end=50, n_envs_start=10, n_envs_step=10, n_itr=2000, n_recognition_train_epochs=30, ngsim_filename='trajdata_i101_trajectories-0750am-0805am.txt', normalize_clip_std_multiple=10.0, params_filepath='', policy_mean_hidden_layer_dims=(128, 128, 64), policy_recurrent=True, policy_std_hidden_layer_dims=(128, 64), recognition_hidden_layer_dims=(128, 64), recognition_learning_rate=0.0005, recurrent_hidden_dim=64, remove_ngsim_veh=False, remove_ngsim_vehicles=False, render_every=25, reward_handler_critic_final_scale=1.0, reward_handler_max_epochs=100, reward_handler_recognition_final_scale=0.2, reward_handler_use_env_rewards=True, scheduler_k=20, trpo_step_size=0.01, use_critic_replay_memory=True, use_infogail=False, validator_render=False, vectorize=True)
# (batch_size=100, critic_batch_size=1000, critic_dropout_keep_prob=0.8, critic_grad_rescale=40.0, critic_hidden_layer_dims=(128, 128, 64), critic_learning_rate=0.0004, decay_reward=False, discount=0.99, do_curriculum=False, env_H=200, env_action_repeat=1, env_multiagent=True, env_primesteps=50, env_reward=0, exp_dir='../../data/experiments', exp_name='multiagent_curr_1_{}', expert_filepath='../../data/trajectories/ngsim.h5', gradient_penalty=2.0, itrs_per_decay=25, latent_dim=4, load_params_init='NONE', max_path_length=1000, n_critic_train_epochs=40, n_envs=22, n_envs_end=50, n_envs_start=10, n_envs_step=10, n_itr=2000, n_recognition_train_epochs=30, ngsim_filename='trajdata_i101_trajectories-0750am-0805am.txt', normalize_clip_std_multiple=10.0, params_filepath='', policy_mean_hidden_layer_dims=(128, 128, 64), policy_recurrent=True, policy_std_hidden_layer_dims=(128, 64), recognition_hidden_layer_dims=(128, 64), recognition_learning_rate=0.0005, recurrent_hidden_dim=64, remove_ngsim_veh=False, remove_ngsim_vehicles=False, render_every=25, reward_handler_critic_final_scale=1.0, reward_handler_max_epochs=100, reward_handler_recognition_final_scale=0.2, reward_handler_use_env_rewards=True, scheduler_k=20, trpo_step_size=0.01, use_critic_replay_memory=True, use_infogail=False, validator_render=False, vectorize=True)
if run_args.n_envs:
args.n_envs = run_args.n_envs
args.env_H = 200
sys.stdout.write('{} vehicles with H = {}'.format(args.n_envs, args.env_H))
for fn in filenames:
args.ngsim_filename = fn
if args.env_multiagent:
# args.n_envs gives the number of simultaneous vehicles
# so run_args.n_multiagent_trajs / args.n_envs gives the number
# of simulations to run overall
egoids = list(range(int(run_args.n_multiagent_trajs / args.n_envs)))
starts = dict()
else:
egoids, starts = load_egoids(fn, args, run_args.n_runs_per_ego_id)
params_filepath = os.path.join(run_args.exp_dir, 'imitate/log/{}'.format(run_args.params_filename))
params = hgail.misc.utils.load_params(params_filepath)
policy_fn = utils.build_hierarchy if run_args.use_hgail else utils.build_policy
env, _, _ = utils.build_ngsim_env(args, alpha=0.)
# policy = policy_fn(args, env)
summary_writer = tf.summary.FileWriter(os.path.join('multiagent_curr', 'imitate', 'summaries'))
data = validate_utils.get_ground_truth()
critic = utils.build_critic(args, data, env, summary_writer)
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
# policy.set_param_values(params['policy'])
critic.network.set_param_values(params['critic'])
normalized_env = hgail.misc.utils.extract_normalizing_env(env)
if normalized_env is not None:
normalized_env._obs_mean = params['normalzing']['obs_mean']
normalized_env._obs_var = params['normalzing']['obs_var']
rate = 0
for i in range(data['actions'].shape[0]):
ob = np.expand_dims(data['observations'][i, :, :], axis=0)
# (2150, 1010, 2)
ac = np.expand_dims(data['actions'][i, :, :], axis=0)
paths = [{'observations': ob[:, i, :], 'actions': ac[:, i, :]} for i in range(ac.shape[1])]
obs = np.concatenate([d['observations'] for d in paths], axis=0)
acts = np.concatenate([d['actions'] for d in paths], axis=0)
# normalize
if critic.dataset.observation_normalizer:
obs = critic.dataset.observation_normalizer(obs)
if critic.dataset.action_normalizer:
acts = critic.dataset.action_normalizer(acts)
# compute rewards
rewards = critic.network.forward(obs, acts, deterministic=True)
# output as a list of numpy arrays, each of len equal to the rewards of
# the corresponding trajectory
# path_lengths = [len(d['rewards']) for d in paths]
# critic_rewards = hgail.misc.utils.batch_to_path_rewards(rewards, path_lengths)
print(min(rewards), max(rewards))
rate += abs(min(rewards) - 16) < 1 and abs(max(rewards) - 27) < 1
print(rate / data['actions'].shape[0])