-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathplanner_test_task.py
456 lines (399 loc) · 16.5 KB
/
planner_test_task.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
import os
import random
import argparse
import pickle
import numpy as np
import matplotlib.pyplot as plt
import math
import json
import IPython as ipy
from itertools import product, combinations
from planning.Safe_Planner import *
# from nav_sim.env.go1_env import Go1Env
from nav_sim.env.task_env import TaskEnv
from utils.pc_util import preprocess_point_cloud, pc_to_axis_aligned_rep, random_sampling
from utils.box_util import box2d_iou
from utils.make_args import make_args_parser
from nav_sim.asset.util import state_lin_to_bin, state_bin_to_lin
from models import build_model
from datasets.sunrgbd import SunrgbdDatasetConfig as dataset_config
import time
import torch
from torch.multiprocessing import Pool, Process, set_start_method
try:
set_start_method('spawn')
except RuntimeError:
pass
from models.model_perception import MLPModelDet
f = open('planning/pre_compute/reachable.pkl', 'rb')
reachable = pickle.load(f)
f = open('planning/pre_compute/Pset.pkl', 'rb')
Pset = pickle.load(f)
dt = 0.1
print("dt=", dt)
# camera + 3DETR
num_pc_points = 40000
np.random.seed(44)
torch.manual_seed(44)
parser = make_args_parser()
args = parser.parse_args(args=[])
# Dataset config: use SUNRGB-D
dataset_config = dataset_config()
# Build model
model, _ = build_model(args, dataset_config)
# Load pre-trained weights
sd = torch.load(args.test_ckpt, map_location=torch.device("cpu"))
model.load_state_dict(sd["model"])
model = model.cuda()
model.eval()
device = torch.device("cuda")
num_in = 32768
num_out = (15, 2,3) # bbox corner representation
# Load params from json file
with open("env_params.json", "r") as read_file:
params = json.load(read_file)
robot_radius = 0.3
# cp = 0.05 # 85% baseline
cp=0.75 # 85% PwC
# cp = 1.33 # 95% PwC
# cp = 0.101 # 95% baseline
# cp = 0.83 # 90% PwC
# cp = 0.066 # 90% baseline
# cp = 0.68 # 80% PwC
# cp = 0.025 # 80% baseline
# cp = 0.63 # 75% PwC
# cp = 0.016 # 75% baseline
is_finetune=False
if is_finetune:
cp=0.65 # 85% PwC
model_cp = MLPModelDet(num_in, num_out)
model_cp.to(device)
model_cp.load_state_dict(torch.load("trained_models/perception_model"))
print("CP: ", cp)
foldername = "../data/perception-guarantees/rooms_sim/"
def state_to_planner(state, sp):
# convert robot state to planner coordinates
return np.array([[[0,-1,0,0],[1,0,0,0],[0,0,0,-1],[0,0,1,0]]])@np.array(state) + np.array([sp.world.w/2,0,0,0])
def state_to_go1(state, sp):
x, y, vx, vy = state[0]
return np.array([y, -x+sp.world.w/2, vy, -vx])
def boxes_to_planner_frame(boxes, sp):
boxes_new = np.zeros_like(boxes)
for i in range(len(boxes)):
#boxes_new[i,:,:] = np.reshape(np.array([[[0,0,0,-1],[1,0,0,0],[0,-1,0,0],[0,0,1,0]]])@np.reshape(boxes[0],(4,1)),(2,2)) + np.array([sp.world.w/2,0])
boxes_new[i,0,0] = -boxes[i,1,1] + sp.world.w/2
boxes_new[i,1,0] = -boxes[i,0,1] + sp.world.w/2
boxes_new[i,:,1] = boxes[i,:,0]
return boxes_new
def plan_env(task):
# initialize planner
visualize = True
task.goal_radius = 1.0
filename = foldername + str(task.env) + '/cp' + str(cp)
grid_data = np.load((foldername + str(task.env) + '/occupancy_grid.npz'), allow_pickle=True)
occupancy_grid = grid_data['arr_0']
N, M = occupancy_grid.shape
env = TaskEnv(render=visualize)
# init_state = [1,-3,-np.pi/2]
task.init_state = [0.2,-1,0,0]
task.goal_loc = [7, -2]
# task.init_state = [float(v) for v in init_state]
# task.goal_loc = [float(v) for v in goal_loc]
planner_init_state = [5,0.2,0,0]
sp = Safe_Planner(init_state=planner_init_state, FoV=70*np.pi/180, n_samples=2000,dt=dt,radius = 0.1, sensor_dt=0.2, max_search_iter=2000)
sp.load_reachable(Pset, reachable)
env.dt = sp.dt
env.reset(task)
t = 0
observation = env.step([0,0])[0] # initial observation
steps_taken = 0
state_traj = []
gt_obs = [[[obs[0], obs[1], obs[2]],[obs[3], obs[4], obs[5]]] for obs in task.piece_bounds_all]
# print("GT obstacles", gt_obs)
ground_truth = boxes_to_planner_frame(np.array(gt_obs), sp)
done = False
collided = False
prev_policy = []
idx_prev = 0
while True and not done and not collided:
state = state_to_planner(env._state, sp)
# print(state)
boxes = get_box(observation, visualize)
# print(boxes)
boxes[:,0,:] -= cp
boxes[:,1,:] += cp
boxes = boxes_to_planner_frame(boxes, sp)
st = time.time()
try:
res = sp.plan(state, boxes)
except:
print("Env: ", str(task.env), " Failed to get plan, Code Error")
continue
# plot_results(filename, state_traj , ground_truth, sp)
# return {"trajectory": np.array(state_traj), "done": done, "collision": collided}
t+=(time.time() - st)
if (steps_taken % 1) == 0 and visualize:
# sp.show_connection(res[0])
sp.world.show(true_boxes=ground_truth)
sp.show(res[0], true_boxes=np.array(ground_truth))
steps_taken+=1
if len(res[0]) > 1 and not done and not collided:
policy_before_trans = np.vstack(res[2])
policy = (np.array([[0,1],[-1,0]])@policy_before_trans.T).T
prev_policy = np.copy(policy)
for step in range(min(int(sp.sensor_dt/sp.dt), len(policy))):
idx_prev = step
state = env._state
state_traj.append(state_to_planner(state, sp))
for obs in task.piece_bounds_all:
if state[0] < obs[3] and state[0] > obs[0]:
if state[1] < obs[4] and state[1] > obs[1]:
og_loc = [round(state[0]/0.1)+1 , round((state[1]+4)/0.1)+1]
# if occupancy_grid[og_loc[0], og_loc[1]]:
print("Env: ", str(task.env), " Collision")
collided = True
break
action = policy[step]
observation, reward, done, info = env.step(action)
t += sp.dt
if done:
print("Env: ", str(task.env), " Success!")
break
elif collided:
print("Env: ", str(task.env), " Collided")
break
else:
if (len(prev_policy) > idx_prev+1): #int(sp.sensor_dt/sp.dt):
# for kk in range(int(sp.sensor_dt/sp.dt)):
idx_prev += 1
action = prev_policy[idx_prev]
observation, reward, done, info = env.step(action)
# time.sleep(sp.dt)
t += sp.dt
else:
action = [0,0]
observation, reward, done, info = env.step(action)
# time.sleep(sp.dt)
t += sp.dt
# for step in range(int(sp.sensor_dt/sp.dt)):
# action = [0,0]
# observation, reward, done, info = env.step(action)
# state = env._state
# state_traj.append(state_to_planner(state, sp))
# t += sp.dt
if t >140:
print("Env: ", str(task.env), " Failed")
break
plot_results(filename, state_traj , ground_truth, sp)
return {"trajectory": np.array(state_traj), "done": done, "collision": collided}
def plot_results(filename, state_traj , ground_truth, sp):
fig, ax = sp.world.show(true_boxes=ground_truth)
plt.gca().set_aspect('equal', adjustable='box')
if len(state_traj) >0:
state_tf = np.squeeze(np.array(state_traj)).T
print('state tf', state_tf.shape)
ax.plot(state_tf[0, :], state_tf[1, :], c='r', linewidth=1, label='state')
plt.legend()
plt.savefig(filename + 'traj_plot_10Hz.png')
# plt.show()
def get_box(observation_, visualize = False):
# Filter points with z < 0.01 and abs(y) > 3.5 and x> 0.01 and within a 1m distance of the robot
# axis transformed, so filter x,y same way
observation_ = observation_[:, observation_[2, :] < 2.9]
# ipy.embed()
observation = np.copy(observation_)
observation[1,:] = observation_[0,:]
observation[0,:] = -observation_[1,:]
if (len(observation[0])>0):
# Preprocess point cloud (random sampling of points), if there are any LIDAR returns
points_new = np.transpose(np.array(observation))
points = np.zeros((1,num_pc_points, 3),dtype='float32')
points = preprocess_point_cloud(np.array(points_new), num_pc_points)
else:
# There are no returns from the LIDAR, object is not visible
points = np.zeros((1,num_pc_points, 3),dtype='float32')
# Convert from camera frame to world frame
point_clouds = []
point_clouds.append(points)
batch_size = 1
pc = np.array(point_clouds).astype('float32')
pc = pc.reshape((batch_size, num_pc_points, 3))
pc_all = torch.from_numpy(pc).to(device)
pc_min_all = pc_all.min(1).values
pc_max_all = pc_all.max(1).values
inputs = {'point_clouds': pc_all, 'point_cloud_dims_min': pc_min_all, 'point_cloud_dims_max': pc_max_all}
outputs = model(inputs)
if is_finetune:
box_features = outputs["box_features"].detach()
box_features_ = torch.reshape(box_features, (1,1,128,256))
finetune = model_cp(box_features_)
bbox_pred_points = outputs['outputs']['box_corners'].detach().cpu()
obj_prob = outputs["outputs"]["objectness_prob"].clone().detach().cpu()
cls_prob = outputs["outputs"]["sem_cls_prob"].clone().detach().cpu()
chair_prob = cls_prob[:,:,3]
sort_box = torch.sort(obj_prob,1,descending=True)
# Visualize
if visualize:
pc_plot = pc[:, pc[0,:,2] > 0.0,:]
plt.figure()
ax = plt.axes(projection='3d')
ax.scatter3D(
pc_plot[0,:,0], pc_plot[0,:,1],pc_plot[0,:,2]
)
ax.set_xlabel('X')
ax.set_ylabel('Y')
ax.set_zlabel('Z')
ax.set_aspect('auto')
num_probs = 0
num_boxes = 15
corners = []
if np.any(np.isnan(np.array(bbox_pred_points))):
return get_room_size_box(pc_all)
for (sorted_idx,prob) in zip(list(sort_box[1][0,:]), list(sort_box[0][0,:])):
if (num_probs < num_boxes):
prob = prob.numpy()
bbox = bbox_pred_points[range(batch_size), sorted_idx, :, :]
cc = pc_to_axis_aligned_rep(bbox.numpy())
flag = False
if num_probs == 0:
corners.append(cc)
num_probs +=1
else:
for cc_keep in corners:
bb1 = (cc_keep[0,0,0],cc_keep[0,0,1],cc_keep[0,1,0],cc_keep[0,1,1])
bb2 = (cc[0,0,0],cc[0,0,1],cc[0,1,0],cc[0,1,1])
# Non-maximal supression, check if IoU more than some threshold to keep box
if(box2d_iou(bb1,bb2) > 0.1):
flag = True
if not flag:
corners.append(cc)
num_probs +=1
if visualize:
r0 = [cc[0,0, 0], cc[0,1, 0]]
r1 = [cc[0,0, 1], cc[0,1, 1]]
r2 = [cc[0,0, 2], cc[0,1, 2]]
for s, e in combinations(np.array(list(product(r0, r1, r2))), 2):
if (np.sum(np.abs(s-e)) == r0[1]-r0[0] or
np.sum(np.abs(s-e)) == r1[1]-r1[0] or
np.sum(np.abs(s-e)) == r2[1]-r2[0]):
if (visualize and not flag):
ax.plot3D(*zip(s, e), color=(0.5+0.5*prob, 0.1,0.1))
if is_finetune:
finetuned_arr = finetune.cpu().detach().numpy()
finetuned_arr = np.squeeze(finetuned_arr)
# ipy.embed()
corners+=finetuned_arr
boxes = np.zeros((len(corners),2,2))
for i in range(len(corners)):
# boxes[i,:,:] = corners[i][0,:,0:2]
boxes[i,:,0] = corners[i][0,:,1]
boxes[i,0,1] = -corners[i][0,1,0]
boxes[i,1,1] = -corners[i][0,0,0]
return boxes
def get_room_size_box( pc_all):
room_size = 8
num_chairs =5
boxes = np.zeros((num_chairs, 2,3))
# box = torch.tensor(pc_to_axis_aligned_rep(bbox_pred_points.numpy()))
boxes[:,0,1] = 0*np.ones_like(boxes[:,0,0])
boxes[:,0,0] = (-room_size/2)*np.ones_like(boxes[:,0,1])
boxes[:,0,2] = 0*np.ones_like(boxes[:,0,2])
boxes[:,1,1] = room_size*np.ones_like(boxes[:,1,0])
boxes[:,1,0] = (room_size/2)*np.ones_like(boxes[:,1,1])
boxes[:,1,2] = room_size*np.ones_like(boxes[:,1,2])
pc_min_all = pc_all.min(1).values
pc_max_all = pc_all.max(1).values
inputs = {'point_clouds': pc_all, 'point_cloud_dims_min': pc_min_all, 'point_cloud_dims_max': pc_max_all}
outputs = model(inputs)
box_features = outputs["box_features"].detach().cpu()
return boxes
def multi_run_wrapper(args):
return plan_env(*args)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument(
'--task_dataset', default='/home/anushri/Documents/Projects/data/perception-guarantees/task.pkl',
nargs='?', help='path to save the task files'
)
parser.add_argument(
'--save_dataset', default='/home/anushri/Documents/Projects/data/perception-guarantees/task++.npz',
nargs='?', help='path to save the task files'
)
args = parser.parse_args()
# Load task dataset
with open(args.task_dataset, 'rb') as f:
task_dataset = pickle.load(f)
# get root repository path
nav_sim_path = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
# Sample random task
save_tasks = []
# ipy.embed()
ii = 0
for task in task_dataset:
# task = random.choice(task_dataset)
# Initialize task
task.goal_radius = 0.5
#
task.observation = {}
task.observation.type = 'rgb' # 'rgb' or 'lidar'
task.observation.rgb = {}
task.observation.depth = {}
task.observation.lidar = {}
task.observation.camera_pos = {}
task.observation.cam_not_inside_obs = {}
task.observation.is_visible = {}
task.observation.rgb.x_offset_from_robot_front = 0.05 # no y offset
task.observation.rgb.z_offset_from_robot_top = 0.05
task.observation.rgb.tilt = 0 # degrees of tilting down towards the floor
task.observation.rgb.img_w = 662
task.observation.rgb.img_h = 376
task.observation.rgb.aspect = 1.57
task.observation.rgb.fov = 70 # in PyBullet, this is vertical field of view in degrees
task.observation.depth.img_w = task.observation.rgb.img_w # needs to be the same now - assume coming from the same camera
task.observation.depth.img_h = task.observation.rgb.img_h
task.observation.lidar.z_offset_from_robot_top = 0.01 # no x/y offset
task.observation.lidar.horizontal_res = 1 # resolution, in degree,1
task.observation.lidar.vertical_res = 1 # resolution, in degree , 1
task.observation.lidar.vertical_fov = 30 # half in one direction, in degree
task.observation.lidar.max_range = 5 # in meter Anushri changed from 5 to 8
task.env= ii
ii+=1
# Run environment
# run_env(task)
# save_tasks += [task]
# print(len(save_tasks))
##################################################################
# Number of environments
num_envs = 100
# Number of parallel threads
num_parallel = 1
##################################################################
# _, _, _ = render_env(seed=0)
##################################################################
env = 0
batch_size = num_parallel
save_file = args.save_dataset
save_res = []
##################################################################
collisions = 0
failed = 0
for task in task_dataset:
# save_tasks += [task]
env += 1
if env%batch_size == 0:
# if env > 0: # In case code stops running, change starting environment to last batch saved
batch = math.floor(env/batch_size)
print("Saving batch", str(batch))
t_start = time.time()
pool = Pool(num_parallel) # Number of parallel processes
results = pool.map_async(plan_env, task_dataset[env-batch_size:env]) # Compute results
pool.close()
pool.join()
# ipy.embed()
ii = 0
for result in results.get():
# Save data
file_batch = foldername+ str(env-batch_size+ii) + "/cp_" + str(cp) + "_10Hz.npz"
np.savez_compressed(file_batch, data=result)
ii+=1
# result = plan_env(task)