forked from facebookresearch/MCC
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdemo.py
172 lines (139 loc) · 5.59 KB
/
demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import numpy as np
import cv2
from tqdm import tqdm
import torch
from pytorch3d.io.obj_io import load_obj
import main_mcc
import mcc_model
import util.misc as misc
from engine_mcc import prepare_data, generate_html
def run_viz(model, samples, device, args, prefix):
model.eval()
seen_xyz, valid_seen_xyz, unseen_xyz, unseen_rgb, labels, seen_images = prepare_data(
samples, device, is_train=False, args=args, is_viz=True
)
pred_occupy = []
pred_colors = []
max_n_unseen_fwd = 2000
model.cached_enc_feat = None
num_passes = int(np.ceil(unseen_xyz.shape[1] / max_n_unseen_fwd))
for p_idx in tqdm(range(num_passes)):
p_start = p_idx * max_n_unseen_fwd
p_end = (p_idx + 1) * max_n_unseen_fwd
cur_unseen_xyz = unseen_xyz[:, p_start:p_end]
cur_unseen_rgb = unseen_rgb[:, p_start:p_end].zero_()
cur_labels = labels[:, p_start:p_end].zero_()
with torch.no_grad():
_, pred = model(
seen_images=seen_images,
seen_xyz=seen_xyz,
unseen_xyz=cur_unseen_xyz,
unseen_rgb=cur_unseen_rgb,
unseen_occupy=cur_labels,
cache_enc=True,
valid_seen_xyz=valid_seen_xyz,
)
pred_occupy.append(pred[..., 0].cpu())
if args.regress_color:
pred_colors.append(pred[..., 1:].reshape((-1, 3)))
else:
pred_colors.append(
(
torch.nn.Softmax(dim=2)(
pred[..., 1:].reshape((-1, 3, 256)) / args.temperature
) * torch.linspace(0, 1, 256, device=pred.device)
).sum(axis=2)
)
with open(prefix + '.html', 'a') as f:
generate_html(
None,
None, None,
torch.cat(pred_occupy, dim=1),
torch.cat(pred_colors, dim=0),
unseen_xyz,
f,
gt_xyz=None,
gt_rgb=None,
mesh_xyz=None,
score_thresholds=args.score_thresholds,
pointcloud_marker_size=3,
)
def pad_image(im, value):
if im.shape[0] > im.shape[1]:
diff = im.shape[0] - im.shape[1]
return torch.cat([im, (torch.zeros((im.shape[0], diff, im.shape[2])) + value)], dim=1)
else:
diff = im.shape[1] - im.shape[0]
return torch.cat([im, (torch.zeros((diff, im.shape[1], im.shape[2])) + value)], dim=0)
def normalize(seen_xyz):
seen_xyz = seen_xyz / (seen_xyz[torch.isfinite(seen_xyz.sum(dim=-1))].var(dim=0) ** 0.5).mean()
seen_xyz = seen_xyz - seen_xyz[torch.isfinite(seen_xyz.sum(dim=-1))].mean(axis=0)
return seen_xyz
def main(args):
model = mcc_model.get_mcc_model(
occupancy_weight=1.0,
rgb_weight=0.01,
args=args,
).cuda()
misc.load_model(args=args, model_without_ddp=model, optimizer=None, loss_scaler=None)
rgb = cv2.imread(args.image)
obj = load_obj(args.point_cloud)
seen_rgb = (torch.tensor(rgb).float() / 255)[..., [2, 1, 0]]
H, W = seen_rgb.shape[:2]
seen_rgb = torch.nn.functional.interpolate(
seen_rgb.permute(2, 0, 1)[None],
size=[H, W],
mode="bilinear",
align_corners=False,
)[0].permute(1, 2, 0)
seen_xyz = obj[0].reshape(H, W, 3)
seg = cv2.imread(args.seg, cv2.IMREAD_UNCHANGED)
mask = torch.tensor(cv2.resize(seg, (W, H))).bool()
seen_xyz[~mask] = float('inf')
seen_xyz = normalize(seen_xyz)
bottom, right = mask.nonzero().max(dim=0)[0]
top, left = mask.nonzero().min(dim=0)[0]
bottom = bottom + 40
right = right + 40
top = max(top - 40, 0)
left = max(left - 40, 0)
seen_xyz = seen_xyz[top:bottom+1, left:right+1]
seen_rgb = seen_rgb[top:bottom+1, left:right+1]
seen_xyz = pad_image(seen_xyz, float('inf'))
seen_rgb = pad_image(seen_rgb, 0)
seen_rgb = torch.nn.functional.interpolate(
seen_rgb.permute(2, 0, 1)[None],
size=[800, 800],
mode="bilinear",
align_corners=False,
)
seen_xyz = torch.nn.functional.interpolate(
seen_xyz.permute(2, 0, 1)[None],
size=[112, 112],
mode="bilinear",
align_corners=False,
).permute(0, 2, 3, 1)
samples = [
[seen_xyz, seen_rgb],
[torch.zeros((20000, 3)), torch.zeros((20000, 3))],
]
run_viz(model, samples, "cuda", args, prefix=args.output)
if __name__ == '__main__':
parser = main_mcc.get_args_parser()
parser.add_argument('--image', default='demo/quest2.jpg', type=str, help='input image file')
parser.add_argument('--point_cloud', default='demo/quest2.obj', type=str, help='input obj file')
parser.add_argument('--seg', default='demo/quest2_seg.png', type=str, help='input obj file')
parser.add_argument('--output', default='demo/output', type=str, help='output path')
parser.add_argument('--granularity', default=0.05, type=float, help='output granularity')
parser.add_argument('--score_thresholds', default=[0.1, 0.2, 0.3, 0.4, 0.5], type=float, nargs='+', help='score thresholds')
parser.add_argument('--temperature', default=0.1, type=float, help='temperature for color prediction.')
parser.add_argument('--checkpoint', default='co3dv2_all_categories.pth', type=str, help='model checkpoint')
parser.set_defaults(eval=True)
args = parser.parse_args()
args.resume = args.checkpoint
args.viz_granularity = args.granularity
main(args)