-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathMainForm.cs
280 lines (189 loc) · 8.76 KB
/
MainForm.cs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
using System;
using System.Collections.Generic;
using System.Drawing;
using System.Windows.Forms;
using Emgu.CV;
using Emgu.CV.Structure;
using Emgu.CV.CvEnum;
using System.IO;
using System.Diagnostics;
using System.Speech.Recognition;
using System.Data;
using System.ComponentModel;
using System.Text;
namespace MultiFaceRec
{
public partial class FrmPrincipal : Form
{
Image<Bgr, Byte> currentFrame;
Capture grabber;
HaarCascade face;
HaarCascade eye;
MCvFont font = new MCvFont(FONT.CV_FONT_HERSHEY_TRIPLEX, 0.5d, 0.5d);
Image<Gray, byte> result, TrainedFace = null;
Image<Gray, byte> gray = null;
List<Image<Gray, byte>> trainingImages = new List<Image<Gray, byte>>();
List<string> labels= new List<string>();
List<string> NamePersons = new List<string>();
int ContTrain, NumLabels, t;
string name, names = null;
private SpeechRecognitionEngine recognitionEngine;
public FrmPrincipal()
{
InitializeComponent();
face = new HaarCascade("haarcascade_frontalface_default.xml");
//eye = new HaarCascade("haarcascade_eye.xml");
try
{
string Labelsinfo = File.ReadAllText(Application.StartupPath + "/TrainedFaces/TrainedLabels.txt");
string[] Labels = Labelsinfo.Split('%');
NumLabels = Convert.ToInt16(Labels[0]);
ContTrain = NumLabels;
string LoadFaces;
for (int tf = 1; tf < NumLabels+1; tf++)
{
LoadFaces = "face" + tf + ".bmp";
trainingImages.Add(new Image<Gray, byte>(Application.StartupPath + "/TrainedFaces/" + LoadFaces));
labels.Add(Labels[tf]);
}
}
catch(Exception e)
{
MessageBox.Show("Lets Add Some face and eyes", "Triained faces load", MessageBoxButtons.OK, MessageBoxIcon.Exclamation);
}
recognitionEngine = new SpeechRecognitionEngine();
recognitionEngine.SetInputToDefaultAudioDevice();
recognitionEngine.SpeechRecognized += (s, args) =>
{
foreach (RecognizedWordUnit word in args.Result.Words)
{
if (word.Confidence > 0.8f)
textBox2.Text += word.Text + " ";
}
textBox3.Text += Environment.NewLine;
};
recognitionEngine.LoadGrammar(new DictationGrammar());
}
private void button1_Click(object sender, EventArgs e)
{
grabber = new Capture();
grabber.QueryFrame();
Application.Idle += new EventHandler(FrameGrabber);
button1.Enabled = false;
}
private void button2_Click(object sender, System.EventArgs e)
{
if (textBox1.Text == "")
{
MessageBox.Show("Please enter your name", "Alert", MessageBoxButtons.OK, MessageBoxIcon.Warning);
textBox1.Focus();
return;
}
else
{
//try
//{
ContTrain = ContTrain + 1;
gray = grabber.QueryGrayFrame().Resize(800, 660, Emgu.CV.CvEnum.INTER.CV_INTER_CUBIC);
MCvAvgComp[][] facesDetected = gray.DetectHaarCascade(
face,
1.2,
10,
Emgu.CV.CvEnum.HAAR_DETECTION_TYPE.DO_CANNY_PRUNING,
new Size(40, 40));
foreach (MCvAvgComp f in facesDetected[0])
{
TrainedFace = currentFrame.Copy(f.rect).Convert<Gray, byte>();
break;
}
//TrainedFace = result.Resize(100, 100, Emgu.CV.CvEnum.INTER.CV_INTER_CUBIC);
trainingImages.Add(TrainedFace);
labels.Add(textBox1.Text);
imageBox1.Image = TrainedFace;
File.WriteAllText(Application.StartupPath + "/TrainedFaces/TrainedLabels.txt", trainingImages.ToArray().Length.ToString() + "%");
for (int i = 1; i < trainingImages.ToArray().Length + 1; i++)
{
trainingImages.ToArray()[i - 1].Save(Application.StartupPath + "/TrainedFaces/face" + i + ".bmp");
File.AppendAllText(Application.StartupPath + "/TrainedFaces/TrainedLabels.txt", labels.ToArray()[i - 1] + "%");
}
MessageBox.Show(textBox1.Text + "´s face detected and added :)", "Training", MessageBoxButtons.OK, MessageBoxIcon.Information);
textBox1.Text = "";
//}
//catch
//{
// MessageBox.Show("Enable the face detection first", "Training Fail", MessageBoxButtons.OK, MessageBoxIcon.Exclamation);
//}
}
}
void FrameGrabber(object sender, EventArgs e)
{
label3.Text = "0";
//label4.Text = "";
NamePersons.Add("");
currentFrame = grabber.QueryFrame().Resize(800, 660, Emgu.CV.CvEnum.INTER.CV_INTER_CUBIC);
gray = currentFrame.Convert<Gray, Byte>();
MCvAvgComp[][] facesDetected = gray.DetectHaarCascade(
face,
1.2,
10,
Emgu.CV.CvEnum.HAAR_DETECTION_TYPE.DO_CANNY_PRUNING,
new Size(20, 20));
foreach (MCvAvgComp f in facesDetected[0])
{
t = t + 1;
result = currentFrame.Copy(f.rect).Convert<Gray, byte>().Resize(100, 100, Emgu.CV.CvEnum.INTER.CV_INTER_CUBIC);
currentFrame.Draw(f.rect, new Bgr(Color.Red), 2);
if (trainingImages.ToArray().Length != 0)
{
MCvTermCriteria termCrit = new MCvTermCriteria(ContTrain, 0.001);
EigenObjectRecognizer recognizer = new EigenObjectRecognizer(
trainingImages.ToArray(),
labels.ToArray(),
3000,
ref termCrit);
name = recognizer.Recognize(result);
currentFrame.Draw(name, ref font, new Point(f.rect.X - 2, f.rect.Y - 2), new Bgr(Color.LightGreen));
}
NamePersons[t-1] = name;
NamePersons.Add("");
label3.Text = facesDetected[0].Length.ToString();
}
t = 0;
for (int nnn = 0; nnn < facesDetected[0].Length; nnn++)
{
names = names + NamePersons[nnn] + ", ";
}
imageBoxFrameGrabber.Image = currentFrame;
label4.Text = names;
names = "";
NamePersons.Clear();
}
private void button3_Click(object sender, EventArgs e)
{
Application.Exit();
}
private void imageBoxFrameGrabber_Click(object sender, EventArgs e)
{
}
private void FrmPrincipal_Load(object sender, EventArgs e)
{
//grabber = new Capture();
//grabber.QueryFrame();
//Application.Idle += new EventHandler(FrameGrabber);
}
private void groupBox2_Enter(object sender, EventArgs e)
{
}
private void imageBox1_Click(object sender, EventArgs e)
{
}
private void button3_Click_1(object sender, EventArgs e)
{
recognitionEngine.RecognizeAsync(RecognizeMode.Multiple);
}
private void button4_Click(object sender, EventArgs e)
{
recognitionEngine.RecognizeAsyncStop();
}
}
}