forked from rampasek/GraphGPS
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathab_results_analysis.py
352 lines (317 loc) · 12.8 KB
/
ab_results_analysis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
import seml
import numpy as np
import matplotlib
matplotlib.use('Agg')
from pathlib import Path
import pandas as pd
import argparse
import shutil
from collections import defaultdict
datasets = {
"CLUSTER_as": {"format":"PyG-GNNBenchmarkDataset", "name": "CLUSTER"},
"CLUSTER_cs": {"format":"PyG-GNNBenchmarkDataset", "name": "CLUSTER"},
"CoraML-RUT": {"format": "PyG-RobustnessUnitTest", "name": "cora_ml"},
"Citeseer-RUT": {"format": "PyG-RobustnessUnitTest", "name": "citeseer"},
"UPFD_gos_bert": {"format": "PyG-UPFD", "name": "gossipcop-bert"},
"UPFD_pol_bert": {"format": "PyG-UPFD", "name": "politifact-bert"},
"reddit_threads": {"format": "PyG-TUDataset", "name": "reddit_threads"},
}
models = {
"Graphormer": {"type": set(["Graphormer"]), "gnn_layer_type": None},
"SAN": {"type": set(["SANTransformer", "WeightedSANTransformer"]), "gnn_layer_type": None},
"GRIT": {"type": set(["GritTransformer"]), "gnn_layer_type": None},
"GCN": {"type": set(["gnn"]), "gnn_layer_type": set(["gcnconvweighted", "gcnconv"])},
"GAT": {"type": set(["gnn"]), "gnn_layer_type": set(["gatconvweighted", "gatconv"])},
"GATv2": {"type": set(["gnn"]), "gnn_layer_type": set(["gatv2convweighted", "gatv2conv"])},
}
ablation_cols_graph = [
"avg_attack_success_rate",
"avg_correct_clean",
"avg_correct_pert",
"avg_margin_clean",
"avg_margin_pert",
]
ablation_cols_node = [
"avg_attack_success_rate",
"avg_correct_acc_clean",
"avg_correct_acc_pert",
"avg_margin_mean_clean",
"avg_margin_mean_pert",
]
random_cols_graph = [
"avg_attack_success_rate_random",
"avg_correct_clean",
"avg_correct_pert_random",
"avg_margin_clean",
"avg_margin_pert_random",
]
random_cols_node = [
"avg_attack_success_rate_random",
"avg_correct_acc_clean",
"avg_correct_acc_pert_random",
"avg_margin_mean_clean",
"avg_margin_mean_pert_random",
]
ablations_settings = {
"Graphormer": {
"w_deg": ["config.graphgym.attack.Graphormer.use_weighted_degrees"],
"sp_find_w": ["config.graphgym.attack.Graphormer.sp_find_weighted"],
"sp_use_w": ["config.graphgym.attack.Graphormer.sp_use_weighted"],
"sp_grad_w": ["config.graphgym.attack.Graphormer.sp_use_gradient"],
"sp_weight_fun": ["config.graphgym.attack.Graphormer.weight_function"],
# TODO: add for node injection
"node_prob": ["config.graphgym.attack.node_prob_enable"],
},
"SAN": {
"cont_att": ["config.graphgym.attack.SAN.wsan_add_partially_fake", "config.graphgym.attack.SAN.add_partially_fake_edges"],
"cont_att_grad": ["config.graphgym.attack.SAN.partially_fake_edge_grad"],
"pert_grad": ["config.graphgym.attack.SAN.enable_pert_grad"],
"BPDA": ["config.graphgym.attack.SAN.pert_BPDA"],
"BPDA_match_signs": ["config.graphgym.attack.SAN.match_true_signs"],
"zero_first": ["config.graphgym.attack.SAN.set_first_pert_zero"],
"backprop": ["config.graphgym.attack.SAN.enable_eig_backprop"],
# TODO: add for node injection
"node_prob": ["config.graphgym.attack.node_prob_enable"],
},
"GRIT": {
"rrwp_grad": ["config.graphgym.attack.GRIT.grad_RRWP"],
"edge_w": ["config.graphgym.attack.GRIT.dummy_edge_weighting"],
"deg_grad": ["config.graphgym.attack.GRIT.grad_degree"],
# TODO: add for node injection
"node_prob": ["config.graphgym.attack.node_prob_enable"],
},
}
random_results = {
"CLUSTER_as": {
"Graphormer": "a_gph_cluster_as_prel",
"GRIT": "a_grt_cluster_as_prel",
"SAN": "a_san_cluster_as_prel",
},
"CLUSTER_cs": {
"Graphormer": "a_gph_cluster_cs_prel",
"GRIT": "a_grt_cluster_cs_prel",
"SAN": "a_san_cluster_cs_prel",
},
"UPFD_gos_bert": {
"Graphormer": "a_gph_upfd_gos_bert_prel",
"GRIT": "a_grt_upfd_gos_bert_prel",
"SAN": "a_san_upfd_gos_bert_new",
},
"UPFD_pol_bert": {
"Graphormer": "a_gph_upfd_pol_bert_prel",
"GRIT": "a_grt_upfd_pol_bert_prel",
"SAN": "a_san_upfd_pol_bert_new",
},
}
def get_abl_setting(result, possible_keys):
value = None
value_updated = False
for key in possible_keys:
key_levels = key.split(".")
abl_value = result
aborted = False
for level_key in key_levels:
abl_value = abl_value.get(level_key, None)
if abl_value is None:
aborted = True
break
if aborted:
continue
value_found = abl_value
if value is None:
value = value_found
value_updated = True
continue
assert value_found == value, f"Conflicting configs for {possible_keys}"
assert value_updated, f"No config for {possible_keys} found"
return value
def clean_path(results_path: str):
results_path = Path(results_path)
if results_path.exists():
shutil.rmtree(results_path)
results_path.mkdir(parents=True)
general_info_file = results_path / "runs_infos.txt"
seed_dir = results_path / "results"
seed_dir.mkdir()
return results_path, general_info_file, seed_dir
def write_info_file(info_file, run_ids, num_params, extras, seeds_graphgym, seeds_seml, run_dirs, budgets, ablation_cfg):
with open(info_file, "w") as f:
f.write("Attack run infos:")
for i, run_id in enumerate(run_ids):
f.write(f"\nrun: {run_id}")
f.write(f"\n\te_budget: {budgets[i]}")
f.write(f"\n\tnum_params: {num_params[i]}")
for k, v in extras.items():
f.write(f"\n\t{k}: {v[i]}")
f.write(f"\n\tgraphgym.seed: {seeds_graphgym[i]}")
f.write(f"\n\tseed(seml): {seeds_seml[i]}")
f.write(f"\n\trun_dir: {run_dirs[i]}")
for k, v in ablation_cfg[i].items():
f.write(f"\n\t{k}: {v}")
f.write("\n")
def write_results(
seed_dir,
results,
seeds_graphgym,
budgets,
result_cols,
random_cols,
ablation_cfg,
ablation_settings,
random_path,
):
seed_results = {}
budget = None
df_dir = seed_dir / "all"
df_dir.mkdir()
for i, seed in enumerate(seeds_graphgym):
if budget is None:
budget = budgets[i]
else:
assert budget == budgets[i], "For ablations the same budget should be used!"
if seed not in seed_results:
seed_results[seed] = defaultdict(list)
for col in result_cols:
seed_results[seed][col].append(results[i]["result"]["attack"]["avg"][col])
for col in ablation_settings:
seed_results[seed][col].append(ablation_cfg[i][col])
seed_dataframes = {}
for seed, results in seed_results.items():
df = pd.DataFrame(results)
seed_dataframes[seed] = df
df.to_csv(df_dir / f"seed_{seed}.csv")
df_random_mean = pd.read_csv(random_path / "agg_mean.csv")
df_random_mean = df_random_mean[df_random_mean["budget"] == budget][random_cols]
df_random_mean.columns = [c.split("_random")[0] for c in df_random_mean.columns]
df_random_std = pd.read_csv(random_path / "agg_std.csv")
df_random_std = df_random_std[df_random_std["budget"] == budget][random_cols]
df_random_std.columns = [c.split("_random")[0] for c in df_random_std.columns]
df_agg = pd.concat(list(seed_dataframes.values()))
df_agg_mean = df_agg.groupby(list(ablation_settings.keys()), as_index=False).mean()
df_agg_std = df_agg.groupby(list(ablation_settings.keys()), as_index=False).std()
df_all_mean = pd.concat((df_agg_mean, df_random_mean), ignore_index=True).fillna("random")
df_all_std = pd.concat((df_agg_std, df_random_std), ignore_index=True).fillna("random")
df_all_mean.to_csv(seed_dir / f"agg_mean.csv")
df_all_std.to_csv(seed_dir / f"agg_std.csv")
def get_collection_results(collection, filter_dict, model):
extra_fields = [
'slurm.array_id', 'slurm.experiments_per_job', 'slurm.task_id', 'stats.real_time',
'stats.pytorch.gpu_max_memory_bytes', 'stats.self.max_memory_bytes',
]
results = seml.get_results(
collection,
['config', 'result'] + extra_fields,
filter_dict=filter_dict,
)
run_ids = [result["_id"] for result in results]
extras = dict()
for key in extra_fields:
values = []
keys_list = key.split(".")
for r in results:
for key_l in keys_list[:-1]:
r = r.get(key_l, {})
key_last = keys_list[-1]
v = r.get(key_last, None)
if v is not None:
if key_last.endswith("bytes"):
v = f"{v * 1e-9:.1f} GB"
if key_last.endswith("time"):
v = f"{v / 3600:.2f} hours"
values.append(v)
extras[key] = values
seeds_graphgym = [result["config"]["graphgym"]["seed"] for result in results]
seeds_seml = [result["config"]["seed"] for result in results]
run_dirs = [result["result"].get("run_dir") for result in results]
num_params = [result["result"].get("num_params") for result in results]
budgets = [result["config"]["graphgym"]["attack"]["e_budget"] for result in results]
ablation_cfg = [
{name: get_abl_setting(r, keys) for name, keys in ablations_settings[model].items()}
for r in results
]
return results, run_ids, extras, seeds_graphgym, seeds_seml, run_dirs, num_params, budgets, ablation_cfg
def check_correct_result(result, dataset: str, model: str, pred_level: str):
df = result["config"]["graphgym"]["dataset"]["format"]
dfg = datasets[dataset]["format"]
dn = result["config"]["graphgym"]["dataset"]["name"]
dng = datasets[dataset]["name"]
assert df == dfg, (f"Dataset format was given to be `{dfg}`, but encountered `{df}`.")
assert dn == dng, (f"Dataset name was given to be `{dng}`, but encountered `{dn}`.")
if dataset.startswith("CLUSTER"):
constrained_attack = dataset.endswith("cs")
if constrained_attack:
assert result["config"]["graphgym"]["attack"]["cluster_sampling"]
else:
assert not result["config"]["graphgym"]["attack"]["cluster_sampling"]
mt = result["config"]["graphgym"]["model"]["type"]
mtg = models[model]["type"]
assert mt in mtg, (f"Model was given to be in {mtg}, but encountered `{mt}`.")
mlg = models[model]["gnn_layer_type"]
if mlg is not None:
ml = result["config"]["graphgym"]["gnn"]["layer_type"]
assert ml in mlg, (f"Model layer was given to be in {mlg}, but encountered `{ml}`.")
assert result["config"]["graphgym"]["attack"]["prediction_level"] == pred_level, (
"Why are there different prediction levels in same collection?"
)
def main(
collection: str,
results_path: str,
filter_dict,
dataset: str,
model: str,
):
results_path, info_file, seed_dir = clean_path(results_path)
(
results,
run_ids,
extras,
seeds_graphgym,
seeds_seml,
run_dirs,
num_params,
budgets,
ablation_cfg,
) = get_collection_results(collection, filter_dict, model)
write_info_file(info_file, run_ids, num_params, extras, seeds_graphgym, seeds_seml, run_dirs, budgets, ablation_cfg)
pred_level = results[0]["config"]["graphgym"]["attack"]["prediction_level"]
if pred_level == "graph":
ablation_cols = ablation_cols_graph
random_cols = random_cols_graph
elif pred_level == "node":
ablation_cols = ablation_cols_node
random_cols = random_cols_node
else:
raise ValueError(f"Unknown prediction level: `{pred_level}`")
for r in results:
check_correct_result(r, dataset, model, pred_level)
random_path = Path("results_a") / dataset / model / random_results[dataset][model] / "results"
assert random_path.is_dir(), f"No results for random attack found in {random_path}"
# write results into file
write_results(
seed_dir,
results,
seeds_graphgym,
budgets,
ablation_cols,
random_cols,
ablation_cfg,
ablation_settings=ablations_settings[model],
random_path=random_path,
)
parser = argparse.ArgumentParser(description='Processes the results of attack.')
parser.add_argument("-c", "--collection")
parser.add_argument("-d", "--dataset")
parser.add_argument("-m", "--model")
if __name__ == "__main__":
args = parser.parse_args()
assert args.dataset in datasets
results_path = f"results_ab/{args.dataset}/{args.model}/{args.collection}"
# not implemented for argparse... but can manually change here
filter_dict = None # {"config.graphgym.attack.cluster_sampling": True}
main(
collection=args.collection,
results_path=results_path,
filter_dict=filter_dict,
dataset=args.dataset,
model=args.model,
)