Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

error in image callback: 'dict' object has no attribute 'name' #133

Open
haniraid opened this issue Sep 15, 2024 · 0 comments
Open

error in image callback: 'dict' object has no attribute 'name' #133

haniraid opened this issue Sep 15, 2024 · 0 comments

Comments

@haniraid
Copy link

Hi evrybody. so im trying to creat a node and run Zoedepth using robomaster s1 monocular camera. the robot is connected and evrything is set and the script is like below, notice that im using torch==2.4.1 ubuntu 20.04 timm==0.6.13 but running the script im getting this error
self.zoe.load_state_dict(torch.load(weights_path, map_location=self.DEVICE), strict=False)
[INFO] [1726359598.098118317] [depth_estimation_node]: Weights loaded from /home/raidhani/ros2_ws/src/MiDaS/weights/dpt_large_384.pt
[INFO] [1726359598.105714726] [depth_estimation_node]: Received image with dimensions: (360, 640, 3)
[INFO] [1726359598.108058095] [depth_estimation_node]: Resized image to: (384, 512, 3)
[ERROR] [1726359603.679989582] [depth_estimation_node]: Error in image callback: 'dict' object has no attribute 'name'
[INFO] [1726359603.681861777] [depth_estimation_node]: Received image with dimensions: (360, 640, 3)
[INFO] [1726359603.683620926] [depth_estimation_node]: Resized image to: (384, 512, 3)

script used:
#!/usr/bin/env python3

import rclpy
from rclpy.node import Node
from sensor_msgs.msg import Image
from cv_bridge import CvBridge
import cv2
import torch
from PIL import Image as PilImage
import json
from zoedepth.utils.misc import colorize
from zoedepth.models.zoedepth_nk.zoedepth_nk_v1 import ZoeDepthNK

class DepthEstimationNode(Node):
def init(self):
super().init('depth_estimation_node')

    # Set up a subscriber to the camera topic
    self.subscription = self.create_subscription(
        Image,
        '/camera/image_color',
        self.image_callback,
        10)
    self.subscription

    # Create a cv_bridge object for converting ROS images to OpenCV format
    self.bridge = CvBridge()

    # Force CPU usage
    self.DEVICE = "cpu"
    
    # Path to the configuration file
    config_path = "/home/raidhani/ZoeDepth/zoedepth/models/zoedepth_nk/config_zoedepth_nk.json"
    weights_path = "/home/raidhani/ros2_ws/src/MiDaS/weights/dpt_large_384.pt"
    
    # Load the JSON config
    try:
        with open(config_path, 'r') as f:
            config = json.load(f)
            self.get_logger().info(f"Successfully loaded config from {config_path}")
    except FileNotFoundError:
        self.get_logger().error(f"Configuration file not found at {config_path}")
        return

    # Extract model configuration and debug the contents
    try:
        model_conf = config.get('model', None)
        if not model_conf:
            raise ValueError(f"Model configuration not found in {config_path}")
        
        self.get_logger().info(f"Raw model configuration: {model_conf}")

        # Ensure 'bin_conf' contains valid entries and log each entry
        valid_bin_conf = []
        for conf in model_conf['bin_conf']:
            if isinstance(conf, dict):
                if 'name' in conf:
                    self.get_logger().info(f"Valid bin_conf entry found: {conf}")
                    valid_bin_conf.append(conf)
                else:
                    self.get_logger().error(f"Invalid entry (missing 'name'): {conf}")
            else:
                self.get_logger().error(f"Invalid bin_conf entry (not a dict): {conf}")
        
        if not valid_bin_conf:
            raise ValueError(f"No valid 'bin_conf' entries found in {config_path}")

        # Update model configuration with valid bin_conf
        model_conf['bin_conf'] = valid_bin_conf
        self.get_logger().info(f"Filtered model configuration: {model_conf}")
    except (KeyError, ValueError) as e:
        self.get_logger().error(f"Error processing model configuration: {e}")
        return

    # Build the model using the valid model configuration
    try:
        self.zoe = ZoeDepthNK.build(bin_conf=model_conf['bin_conf']).to(self.DEVICE)
        self.get_logger().info("Model successfully built.")
    except KeyError as e:
        self.get_logger().error(f"Missing key in model configuration: {e}")
        return
    except Exception as e:
        self.get_logger().error(f"Error building the model: {e}")
        return

    # Load the weights into the model with strict=False to ignore mismatches
    try:
        self.zoe.load_state_dict(torch.load(weights_path, map_location=self.DEVICE), strict=False)
        self.get_logger().info(f"Weights loaded from {weights_path}")
    except FileNotFoundError:
        self.get_logger().error(f"Weights file not found at {weights_path}")
        return
    except RuntimeError as e:
        self.get_logger().error(f"Error loading weights: {e}")
        return

def image_callback(self, msg):
    # Ensure that the model has been built before processing images
    if not hasattr(self, 'zoe'):
        self.get_logger().error("Model has not been initialized.")
        return

    try:
        # Convert ROS image to OpenCV format
        cv_image = self.bridge.imgmsg_to_cv2(msg, desired_encoding='rgb8')
        self.get_logger().info(f"Received image with dimensions: {cv_image.shape}")

        # Resize image
        target_size = (512, 384)
        cv_image_resized = cv2.resize(cv_image, target_size)
        self.get_logger().info(f"Resized image to: {cv_image_resized.shape}")

        # Convert to PIL image
        pil_image = PilImage.fromarray(cv_image_resized)

        # Run depth inference
        depth_numpy = self.zoe.infer_pil(pil_image)

        # Colorize depth for visualization
        colored_depth = colorize(depth_numpy)

        # Show the depth image
        cv2.imshow("Depth", colored_depth)
        cv2.waitKey(1)

    except Exception as e:
        self.get_logger().error(f"Error in image callback: {e}")

def main(args=None):
rclpy.init(args=args)
try:
depth_estimation_node = DepthEstimationNode()
rclpy.spin(depth_estimation_node)
except Exception as e:
print(f"Error running the node: {e}")
finally:
rclpy.shutdown()

if name == 'main':
main()

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant