-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathmain_act.py
430 lines (337 loc) · 20.3 KB
/
main_act.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
import os
import json
import time
import pickle
from tqdm import tqdm
import torch
import wandb
import numpy as np
from torch.utils.data import DataLoader
from config.model_config import build_args
from dataset.dataset_class import build_dataset
from model.ACMNet import ACMNet
from utils.net_utils import set_random_seed, ACMLoss
from utils.net_evaluation import ANETDetection, upgrade_resolution, get_proposal_oic, nms, result2json
"""
#---------------------------------------------------------------------------------------------------------------#
#---------------------------------------------------------------------------------------------------------------#
# TRAIN FUNCTION #
#---------------------------------------------------------------------------------------------------------------#
#---------------------------------------------------------------------------------------------------------------#
"""
def train(args, model, dataloader, criterion, optimizer):
model.train()
print("-------------------------------------------------------------------------------")
device = args.device
# train_process
train_num_correct = 0
train_num_total = 0
loss_stack = []
act_inst_loss_stack = []
act_cont_loss_stack = []
act_back_loss_stack = []
guide_loss_stack = []
att_loss_stack = []
feat_loss_stack = []
for input_feature, vid_label_t in tqdm(dataloader):
vid_label_t = vid_label_t.to(device)
input_feature = input_feature.to(device)
act_inst_cls, act_cont_cls, act_back_cls,\
act_inst_feat, act_cont_feat, act_back_feat,\
temp_att, act_inst_cas, _, _, _= model(input_feature)
loss, loss_dict = criterion(act_inst_cls, act_cont_cls, act_back_cls, vid_label_t, temp_att,\
act_inst_feat, act_cont_feat, act_back_feat, act_inst_cas)
optimizer.zero_grad()
if not torch.isnan(loss):
loss.backward()
optimizer.step()
with torch.no_grad():
fg_score = act_inst_cls[:, :args.action_cls_num]
label_np = vid_label_t.cpu().numpy()
score_np = fg_score.cpu().numpy()
pred_np = np.zeros_like(score_np)
pred_np[score_np >= args.cls_threshold] = 1
pred_np[score_np < args.cls_threshold] = 0
correct_pred = np.sum(label_np == pred_np, axis=1)
train_num_correct += np.sum((correct_pred == args.action_cls_num))
train_num_total += correct_pred.shape[0]
loss_stack.append(loss.cpu().item())
act_inst_loss_stack.append(loss_dict["act_inst_loss"])
act_cont_loss_stack.append(loss_dict["act_cont_loss"])
act_back_loss_stack.append(loss_dict["act_back_loss"])
guide_loss_stack.append(loss_dict["guide_loss"])
feat_loss_stack.append(loss_dict["feat_loss"])
att_loss_stack.append(loss_dict["sparse_loss"])
train_acc = train_num_correct/train_num_total
train_log_dict = {}
train_log_dict["train_act_inst_cls_loss"] = np.mean(act_inst_loss_stack)
train_log_dict["train_act_cont_cls_loss"] = np.mean(act_cont_loss_stack)
train_log_dict["train_act_back_cls_loss"] = np.mean(act_back_loss_stack)
train_log_dict["train_guide_loss"] = np.mean(guide_loss_stack)
train_log_dict["train_feat_loss"] = np.mean(feat_loss_stack)
train_log_dict["train_att_loss"] = np.mean(att_loss_stack)
train_log_dict["train_loss"] = np.mean(loss_stack)
train_log_dict["train_acc"] = train_acc
print("")
print("train_act_inst_cls_loss:{:.3f} train_act_cont_cls_loss:{:.3f}".format(np.mean(act_inst_loss_stack), np.mean(act_cont_loss_stack)))
print("train_act_back_cls_loss:{:.3f} train_att_loss:{:.3f}".format(np.mean(act_back_loss_stack), np.mean(att_loss_stack)))
print("train_feat_loss: {:.3f} train_loss:{:.3f}".format(np.mean(feat_loss_stack), np.mean(loss_stack)))
print("train acc:{:.3f}".format(train_acc))
print("-------------------------------------------------------------------------------")
return train_log_dict
"""
#---------------------------------------------------------------------------------------------------------------#
#---------------------------------------------------------------------------------------------------------------#
# TEST FUNCTION #
#---------------------------------------------------------------------------------------------------------------#
#---------------------------------------------------------------------------------------------------------------#
"""
def test(args, model, dataloader, criterion, phase="test"):
model.eval()
print("-------------------------------------------------------------------------------")
device = args.device
save_dir = args.save_dir
test_num_correct = 0
test_num_total = 0
loss_stack = []
act_inst_loss_stack = []
act_cont_loss_stack = []
act_back_loss_stack = []
guide_loss_stack = []
att_loss_stack = []
feat_loss_stack = []
test_final_result = dict()
test_final_result['version'] = 'VERSION 1.3'
test_final_result['results'] = {}
test_final_result['external_data'] = {'used': True, 'details': 'Features from I3D Net'}
test_pred_score_stack = []
test_vid_label_stack = []
test_tmp_data_log_dict = {}
for vid_name, input_feature, vid_label_t, vid_len, vid_duration in tqdm(dataloader):
input_feature = input_feature.to(device)
vid_label_t = vid_label_t.to(device)
vid_len = vid_len[0].cpu().numpy()
t_factor = (args.segment_frames_num * vid_len) / (args.frames_per_sec * args.test_upgrade_scale * input_feature.shape[1])
#--------------------------------------------------------------------------#
#--------------------------------------------------------------------------#
act_inst_cls, act_cont_cls, act_back_cls,\
act_inst_feat, act_cont_feat, act_back_feat,\
temp_att, act_inst_cas, act_cas, act_cont_cas, act_back_cas = model(input_feature)
#--------------------------------------------------------------------------#
#--------------------------------------------------------------------------#
loss, loss_dict = criterion(act_inst_cls, act_cont_cls, act_back_cls, vid_label_t, temp_att,\
act_inst_feat, act_cont_feat, act_back_feat, act_inst_cas)
loss_stack.append(loss.cpu().item())
act_inst_loss_stack.append(loss_dict["act_inst_loss"])
act_cont_loss_stack.append(loss_dict["act_cont_loss"])
act_back_loss_stack.append(loss_dict["act_back_loss"])
guide_loss_stack.append(loss_dict["guide_loss"])
att_loss_stack.append(loss_dict["sparse_loss"])
feat_loss_stack.append(loss_dict["feat_loss"])
#--------------------------------------------------------------------------#
#--------------------------------------------------------------------------#
temp_cas = act_inst_cas
test_tmp_data_log_dict[vid_name[0]] = {}
test_tmp_data_log_dict[vid_name[0]]["vid_len"] = vid_len
test_tmp_data_log_dict[vid_name[0]]["temp_att_score_np"] = temp_att.cpu().numpy()
test_tmp_data_log_dict[vid_name[0]]["temp_org_cls_score_np"] = act_cas.cpu().numpy()
test_tmp_data_log_dict[vid_name[0]]["temp_ins_cls_score_np"] = act_inst_cas.cpu().numpy()
test_tmp_data_log_dict[vid_name[0]]["temp_con_cls_score_np"] = act_cont_cas.cpu().numpy()
test_tmp_data_log_dict[vid_name[0]]["temp_bak_cls_score_np"] = act_back_cas.cpu().numpy()
#--------------------------------------------------------------------------#
#--------------------------------------------------------------------------#
fg_score = act_inst_cls[:, :args.action_cls_num]
label_np = vid_label_t.cpu().numpy()
score_np = fg_score.cpu().numpy()
pred_np = np.zeros_like(score_np)
pred_np[score_np >= args.cls_threshold] = 1
pred_np[score_np < args.cls_threshold] = 0
correct_pred = np.sum(label_np == pred_np, axis=1)
test_num_correct += np.sum((correct_pred == args.action_cls_num))
test_num_total += correct_pred.shape[0]
#--------------------------------------------------------------------------#
#--------------------------------------------------------------------------#
# GENERATE PROPORALS.
temp_cls_score_np = temp_cas[:, :, :args.action_cls_num].cpu().numpy()
temp_cls_score_np = np.reshape(temp_cls_score_np, (temp_cas.shape[1], args.action_cls_num, 1))
temp_att_ins_score_np = temp_att[:, :, 0].unsqueeze(2).expand([-1, -1, args.action_cls_num]).cpu().numpy()
temp_att_con_score_np = temp_att[:, :, 1].unsqueeze(2).expand([-1, -1, args.action_cls_num]).cpu().numpy()
temp_att_ins_score_np = np.reshape(temp_att_ins_score_np, (temp_cas.shape[1], args.action_cls_num, 1))
temp_att_con_score_np = np.reshape(temp_att_con_score_np, (temp_cas.shape[1], args.action_cls_num, 1))
score_np = np.reshape(score_np, (-1))
if score_np.max() > args.cls_threshold:
cls_prediction = np.array(np.where(score_np > args.cls_threshold)[0])
else:
cls_prediction = np.array([np.argmax(score_np)], dtype=np.int)
temp_cls_score_np = temp_cls_score_np[:, cls_prediction]
temp_att_ins_score_np = temp_att_ins_score_np[:, cls_prediction]
temp_att_con_score_np = temp_att_con_score_np[:, cls_prediction]
test_tmp_data_log_dict[vid_name[0]]["temp_cls_score_np"] = temp_cls_score_np
int_temp_cls_scores = upgrade_resolution(temp_cls_score_np, args.test_upgrade_scale)
int_temp_att_ins_score_np = upgrade_resolution(temp_att_ins_score_np, args.test_upgrade_scale)
int_temp_att_con_score_np = upgrade_resolution(temp_att_con_score_np, args.test_upgrade_scale)
cas_act_thresh = [0.005, 0.01, 0.015, 0.02]
att_act_thresh = [0.005, 0.01, 0.015, 0.02]
proposal_dict = {}
# CAS based proposal generation
# cas_act_thresh = []
for act_thresh in cas_act_thresh:
tmp_int_cas = int_temp_cls_scores.copy()
zero_location = np.where(tmp_int_cas < act_thresh)
tmp_int_cas[zero_location] = 0
tmp_seg_list = []
for c_idx in range(len(cls_prediction)):
pos = np.where(tmp_int_cas[:, c_idx] >= act_thresh)
tmp_seg_list.append(pos)
props_list = get_proposal_oic(tmp_seg_list, (0.70*tmp_int_cas + 0.30*int_temp_att_ins_score_np), cls_prediction, score_np, t_factor, lamb=0.150, gamma=0.0)
for i in range(len(props_list)):
if len(props_list[i]) == 0:
continue
class_id = props_list[i][0][0]
if class_id not in proposal_dict.keys():
proposal_dict[class_id] = []
proposal_dict[class_id] += props_list[i]
# att_act_thresh = []
for att_thresh in att_act_thresh:
tmp_int_att = int_temp_att_ins_score_np.copy()
zero_location = np.where(tmp_int_att < att_thresh)
tmp_int_att[zero_location] = 0
tmp_seg_list = []
for c_idx in range(len(cls_prediction)):
pos = np.where(tmp_int_att[:, c_idx] >= att_thresh)
tmp_seg_list.append(pos)
props_list = get_proposal_oic(tmp_seg_list, (0.70*int_temp_cls_scores + 0.30*tmp_int_att), cls_prediction, score_np, t_factor, lamb=0.150, gamma=0.250)
for i in range(len(props_list)):
if len(props_list[i]) == 0:
continue
class_id = props_list[i][0][0]
if class_id not in proposal_dict.keys():
proposal_dict[class_id] = []
proposal_dict[class_id] += props_list[i]
# NMS
final_proposals = []
for class_id in proposal_dict.keys():
final_proposals.append(nms(proposal_dict[class_id], args.nms_thresh))
test_final_result['results'][vid_name[0]] = result2json(final_proposals, args.class_name_lst)
test_acc = test_num_correct / test_num_total
if args.test:
# Final Test
test_pred_txt_f = os.path.join(save_dir, "final_test_pred.txt")
test_label_txt_f = os.path.join(save_dir, "final_test_label.txt")
test_final_json_path = os.path.join(save_dir, "final_test_{}_result.json".format(args.dataset))
else:
# Train Evalutaion
test_pred_txt_f = os.path.join(save_dir, "test_pred.txt")
test_label_txt_f = os.path.join(save_dir, "test_label.txt")
test_final_json_path = os.path.join(save_dir, "{}_lateset_result.json".format(args.dataset))
np.savetxt(test_pred_txt_f, np.array(test_pred_score_stack), fmt="%.3f")
np.savetxt(test_label_txt_f, np.array(test_vid_label_stack), fmt="%.3f")
with open(test_final_json_path, 'w') as f:
json.dump(test_final_result, f)
anet_detection = ANETDetection(ground_truth_file=args.test_gt_file_path,
prediction_file=test_final_json_path,
tiou_thresholds=args.tiou_thresholds,
subset="val")
test_mAP = anet_detection.evaluate()
print("")
print("test_act_inst_cls_loss:{:.3f} test_act_cont_cls_loss:{:.3f}".format(np.mean(act_inst_loss_stack), np.mean(act_cont_loss_stack)))
print("test_act_back_cls_loss:{:.3f} test_att_loss:{:.3f}".format(np.mean(act_back_loss_stack), np.mean(att_loss_stack)))
print("test_feat_norm_loss: {:.3f} test_loss:{:.3f}".format(np.mean(feat_loss_stack), np.mean(loss_stack)))
print("test acc:{:.3f}".format(test_acc))
print("-------------------------------------------------------------------------------")
test_log_dict = {}
test_log_dict["test_act_inst_cls_loss"] = np.mean(act_inst_loss_stack)
test_log_dict["test_act_cont_cls_loss"] = np.mean(act_cont_loss_stack)
test_log_dict["test_act_back_cls_loss"] = np.mean(act_back_loss_stack)
test_log_dict["test_feat_loss"] = np.mean(feat_loss_stack)
test_log_dict["test_att_loss"] = np.mean(att_loss_stack)
test_log_dict["test_loss"] = np.mean(loss_stack)
test_log_dict["test_acc"] = test_acc
test_log_dict["test_mAP"] = test_mAP
return test_log_dict, test_tmp_data_log_dict
"""
#---------------------------------------------------------------------------------------------------------------#
#---------------------------------------------------------------------------------------------------------------#
# MAIN FUNCTION #
#---------------------------------------------------------------------------------------------------------------#
#---------------------------------------------------------------------------------------------------------------#
"""
def main(args):
torch.multiprocessing.set_sharing_strategy('file_system')
os.environ['CUDA_VIVIBLE_DEVICES'] = args.gpu
device = torch.device("cuda:{}".format(args.gpu) if torch.cuda.is_available() else "cpu")
local_time = time.localtime()[0:5]
this_dir = os.path.join(os.path.dirname(__file__), ".")
if not args.test:
save_dir = os.path.join(this_dir, "checkpoints_acmnet", "checkpoints_acmnet_{:02d}_{:02d}_{:02d}_{:02d}_{:02d}"\
.format(local_time[0], local_time[1], local_time[2],\
local_time[3], local_time[4]))
else:
save_dir = os.path.dirname(args.checkpoint)
args.save_dir = save_dir
args.device = device
if not os.path.isdir(save_dir):
os.makedirs(save_dir)
model = ACMNet(args)
if args.checkpoint is not None and os.path.isfile(args.checkpoint):
checkpoint = torch.load(args.checkpoint, map_location=torch.device("cpu"))
model.load_state_dict(checkpoint["model_state_dict"])
model = model.to(device)
if not args.test:
if not args.without_wandb:
wandb.init(name='traing_log_{:02d}_{:02d}_{:02d}_{:02d}_{:02d}'\
.format(local_time[0], local_time[1], local_time[2],
local_time[3], local_time[4]),
config=args,
project="ACMNet_{}".format(args.dataset),
sync_tensorboard=True)
optimizer = torch.optim.Adam(model.parameters(), lr=args.lr, betas=(0.9, 0.999), weight_decay=args.weight_decay)
# optimizer = torch.optim.Adam(model.parameters(), lr=0.0001, betas=(0.9, 0.999), weight_decay=0.0005)
train_dataset = build_dataset(args, phase="train", sample="random")
test_dataset = build_dataset(args, phase="test", sample="uniform")
train_dataloader = DataLoader(train_dataset, batch_size=args.batch_size, shuffle=True,
num_workers=args.num_workers, drop_last=False)
test_dataloader = DataLoader(test_dataset, batch_size=1, shuffle=False,
num_workers=args.num_workers, drop_last=False)
criterion = ACMLoss(lamb1=args.loss_lamb_1, lamb2=args.loss_lamb_2, lamb3=args.loss_lamb_3, dataset="ActivityNet")
best_test_mAP = 0
for epoch_idx in tqdm(range(args.start_epoch, args.epochs)):
train_log_dict = train(args, model, train_dataloader, criterion, optimizer)
if epoch_idx %2 == 0:
with torch.no_grad():
test_log_dict, test_tmp_data_log_dict = test(args, model, test_dataloader, criterion)
test_mAP = test_log_dict["test_mAP"]
if test_mAP > best_test_mAP:
best_test_mAP = test_mAP
checkpoint_file = "{}_best_checkpoint.pth".format(args.dataset)
torch.save({
'epoch':epoch_idx,
'model_state_dict':model.state_dict()
}, os.path.join(save_dir, checkpoint_file))
with open(os.path.join(save_dir, "test_tmp_data_log_dict.pickle"), "wb") as f:
pickle.dump(test_tmp_data_log_dict, f)
checkpoint_file = "{}_latest_checkpoint.pth".format(args.dataset)
torch.save({
'epoch':epoch_idx,
'model_state_dict':model.state_dict()
}, os.path.join(save_dir, checkpoint_file))
print("Current test_mAP:{:.4f}, Current Best test_mAP:{:.4f} Current Epoch:{}/{}".format(test_mAP, best_test_mAP, epoch_idx, args.epochs))
print("-------------------------------------------------------------------------------")
if not args.without_wandb:
wandb.log(train_log_dict)
wandb.log(test_log_dict)
else:
test_dataset = build_dataset(args, phase="test", sample="uniform")
test_dataloader = DataLoader(test_dataset, batch_size=1, shuffle=False,
num_workers=args.num_workers, drop_last=False)
criterion = ACMLoss()
with torch.no_grad():
test_log_dict, test_tmp_data_log_dict = test(args, model, test_dataloader, criterion)
test_mAP = test_log_dict["test_mAP"]
with open(os.path.join(save_dir, "test_tmp_data_log_dict.pickle"), "wb") as f:
pickle.dump(test_tmp_data_log_dict, f)
if __name__ == "__main__":
set_random_seed()
args = build_args(dataset="ActivityNet")
print(args)
main(args)