-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdb_reader.py
266 lines (216 loc) · 10.3 KB
/
db_reader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
import configparser
from argparse import ArgumentParser
from glob import glob
import pandas as pd
import numpy as np
import sys, os
from sklearn.model_selection import train_test_split
from core.base_classes import DataSet
from core import util as core_util
from keras.preprocessing.image import ImageDataGenerator
import h5py
from helpers.datageneratormemory import DataGeneratorMemory
class FnameReader(DataSet):
def __init__(self, config: configparser.ConfigParser, args) -> None:
super(FnameReader, self).__init__(config, args, False)
FLAGS = self.params
fnames = glob(FLAGS.audio_path)
path_df = pd.DataFrame(data={'path': fnames})
path_df['fname'] = path_df['path'].apply(lambda r: os.path.basename(r))
if FLAGS.label_fname is not None:
df = pd.read_csv(FLAGS.label_fname)
path_df = df.merge(path_df, left_on='fname', right_on='fname')
self.x_train = path_df
def get_parser(self) -> ArgumentParser:
parser = ArgumentParser(description='FnameReader')
parser.add_argument('--label_fname',
type=str)
parser.add_argument('--audio_path',
type=str, required=True)
return parser
def get_shape(self):
return self.x_train.shape[1:]
def get_train(self):
return self.x_train
def get_train_size(self) -> int:
return self.x_train.shape
def get_test_label(self):
raise NotImplementedError()
def get_train_label(self):
raise NotImplementedError()
def get_n_classes(self):
raise NotImplementedError()
def get_test_size(self) -> int:
raise NotImplementedError()
def get_test(self):
raise NotImplementedError()
class MelSpectogramm(DataSet):
def __init__(self, config: configparser.ConfigParser, args) -> None:
super().__init__(config, args, False)
FLAGS = self.params
x_train, y_train = self.load_npz(FLAGS.features, FLAGS.labels)
if FLAGS.val_features is not None and FLAGS.val_labels is not None:
x_test, y_test = self.load_npz(FLAGS.val_features, FLAGS.val_labels)
else:
x_train, x_test, y_train, y_test = train_test_split(x_train, y_train, random_state=9,
test_size=FLAGS.test_size)
self.x_train = x_train
self.y_train = y_train
self.x_test = x_test
self.y_test = y_test
if FLAGS.label_smoothing is not None:
self.y_train *= (1 - 2 * FLAGS.label_smoothing)
self.y_train += FLAGS.label_smoothing
def load_npz(self, features, labels):
x, y = None, None
for f_fname, l_fname in zip(features.split(","), labels.split(",")):
tmp_x = np.load(f_fname)['arr_0']
tmp_y = np.load(l_fname)['arr_0']
if x is None:
x = tmp_x
y = tmp_y
else:
x = np.concatenate((x, tmp_x), axis=0)
y = np.concatenate((y, tmp_y), axis=0)
x = x.reshape(x.shape + (1,))
return x, y
def get_parser(self) -> ArgumentParser:
parser = ArgumentParser(description='MelSpectogramm')
parser.add_argument('--test_size',
type=float, default=.1)
parser.add_argument('--label_smoothing',
type=float)
parser.add_argument('--features',
type=str, required=True)
parser.add_argument('--labels',
type=str, required=True)
parser.add_argument('--val_features',
type=str)
parser.add_argument('--val_labels',
type=str)
return parser
def get_shape(self):
return self.x_train.shape[1:]
def get_train(self):
return self.x_train, self.y_train
def get_train_size(self) -> int:
return self.x_train.shape[0]
def get_test_size(self) -> int:
return self.x_test.shape[0]
def get_test(self):
return self.x_test, self.y_test
class AugmentedDataset(DataSet):
def __init__(self, config: configparser.ConfigParser, args) -> None:
super().__init__(config, args, True)
FLAGS = self.params
self.train_dg = self.create_dg(FLAGS.data_generator, FLAGS.train_params)
self.test_dg = self.create_dg(FLAGS.data_generator, FLAGS.test_params)
db_reader_klass = core_util.load_class(FLAGS.db_reader)
self.db_reader = db_reader_klass(self.config, self.args)
x_train, y_train = self.db_reader.get_train()
self.train_dg.fit(x_train)
self.test_dg.fit(x_train)
def get_shape(self):
return self.get_db_reader().get_shape()
def get_db_reader(self) -> DataSet:
return self.db_reader
def create_dg(self, data_generator, params) -> ImageDataGenerator:
parser = self.get_dg_parser()
dg_FLAGS, remaining_argv = parser.parse_known_args(self.get_sec_params(params))
dg_klass = core_util.load_class(data_generator)
return dg_klass(**vars(dg_FLAGS))
def get_dg_parser(self) -> ArgumentParser:
parser = ArgumentParser()
parser.add_argument('--horizontal_flip', action='store_true')
parser.add_argument('--featurewise_center', action='store_true')
parser.add_argument('--featurewise_std_normalization', action='store_true')
parser.add_argument('--samplewise_center', action='store_true')
parser.add_argument('--samplewise_std_normalization', action='store_true')
parser.add_argument('--vertical_flip', action='store_true')
parser.add_argument('--rotation_range', type=int)
parser.add_argument('--width_shift_range', type=float)
parser.add_argument('--height_shift_range', type=float)
return parser
def get_flow_parser(self) -> ArgumentParser:
parser = ArgumentParser()
parser.add_argument('--batch_size', default=32, type=int)
return parser
def get_parser(self) -> ArgumentParser:
parser = ArgumentParser()
parser.add_argument('--db_reader', required=True, type=str)
parser.add_argument('--data_generator', required=True, type=str)
parser.add_argument('--train_params', required=True, type=str)
parser.add_argument('--test_params', required=True, type=str)
return parser
def get_test(self):
FLAGS = self.params
db = self.get_db_reader()
x_test, y_test = db.get_test()
flow_FLAGS, remaining_argv = self.get_flow_parser().parse_known_args(self.get_sec_params(FLAGS.test_params))
return self.test_dg.flow(x_test, y_test, **vars(flow_FLAGS))
def get_test_size(self) -> int:
return self.get_db_reader().get_test_size()
def get_train(self):
FLAGS = self.params
db = self.get_db_reader()
x_train, y_train = db.get_train()
flow_FLAGS, remaining_argv = self.get_flow_parser().parse_known_args(self.get_sec_params(FLAGS.train_params))
return self.train_dg.flow(x_train, y_train, **vars(flow_FLAGS))
def get_train_size(self) -> int:
return self.get_db_reader().get_train_size()
class RawData(DataSet):
def __init__(self, config: configparser.ConfigParser, args) -> None:
super().__init__(config, args, True)
FLAGS = self.params
h5f_features = h5py.File(FLAGS.features, 'r')
h5f_labels = h5py.File(FLAGS.labels, 'r')
self.x_train = list(map(lambda x: x.value, list(h5f_features.values())))
self.y_train = list(map(lambda x: x.value, list(h5f_labels.values())))
print("RawData: data is loaded")
self.x_train, self.x_test, self.y_train, self.y_test = train_test_split(self.x_train, self.y_train,
random_state=9,
test_size=FLAGS.test_size)
self.labels_train = list(map(lambda r: np.argwhere(r == 1).reshape(-1), self.y_train))
self.labels_test = list(map(lambda r: np.argwhere(r == 1).reshape(-1), self.y_test))
traingenerator_params = {'batch_size': FLAGS.batch_size}
test_generator_params = {'batch_size': FLAGS.batch_size}
if FLAGS.train_generator_params is not None:
traingenerator_params = {**traingenerator_params, **self.get_generator_params(FLAGS.train_generator_params)}
if FLAGS.test_generator_params is not None:
test_generator_params = {**test_generator_params, **self.get_generator_params(FLAGS.test_generator_params)}
self.train_dg = DataGeneratorMemory(self.x_train, self.labels_train, **traingenerator_params)
self.test_dg = DataGeneratorMemory(self.x_test, self.labels_test, **test_generator_params)
def get_train(self):
return self.train_dg
def get_test(self):
return self.test_dg
def get_shape(self):
return (60, 77, 1)
def get_train_size(self) -> int:
return len(self.x_train) // 2
def get_test_size(self) -> int:
return len(self.x_test) // 2
def get_parser(self) -> ArgumentParser:
parser = ArgumentParser(description='RawData')
parser.add_argument('--test_size',
type=float, default=.1)
parser.add_argument('--batch_size',
type=int, default=32)
parser.add_argument('--features',
type=str, required=True)
parser.add_argument('--labels',
type=str, required=True)
parser.add_argument('--train_generator_params',
type=str, required=True)
parser.add_argument('--test_generator_params',
type=str, required=True)
return parser
def get_generator_params(self, sec_name):
generator_params = self.get_generator_parser().parse_args(self.get_sec_params(sec_name))
return vars(generator_params)
def get_generator_parser(self) -> ArgumentParser:
parser = ArgumentParser(description='Generator')
parser.add_argument('--speedchange_sigma', type=float)
parser.add_argument('--pitchchange_sigma', type=float)
parser.add_argument('--noise_sigma', type=float)
return parser