We infer models using the following APIs:
-
Source framework (Python API), where these models were trained. For example, we represent below the command line for the googlenet-v1 model trained using Caffe.
python inference_caffe.py -m googlenet-v1.prototxt \ -w googlenet-v1.caffemodel \ -i data/ -b 4 -t classification \ --mean 104.0 117.0 123.0
-
TVM (Python API), when we load models directly from source format.
python inference_tvm_caffe.py -t classification -is 4 3 224 224 \ -m googlenet-v1.prototxt \ -w googlenet-v1.caffemodel \ -i data/ --mean 0.408 0.459 0.482 -b 4 \ -l labels/image_net_synset.txt \ --layout NCHW --channel_swap 2 1 0 \ --not_softmax
-
TVM (Python API) for models converted from the source format to the TVM one. For example, we represent below the command line for the
googlenet-v1
model trained using Caffe and converted into TVM format. Supposed that converted models should be copied into theinference
directory.cd ../model_converters python caffe_to_tvm_converter.py -mn googlenet-v1 -is 4 3 224 224 \ -m googlenet-v1.prototxt \ -w googlenet-v1.caffemodel cd ../inference python inference_tvm.py -mn googlenet-v1 -m googlenet-v1.json \ -w googlenet-v1.params -i data/ -b 4 \ -l labels/image_net_synset.txt -is 4 3 224 224 \ --not_softmax -t classification \ --channel_swap 2 1 0 --layout NCHW \ --input_name data --mean 0.408 0.459 0.482
-
TVM (Python API) for models optimized using TVM tuning methods. Supposed that converted models should be copied into the
inference
directory.cd ../tvm_auto_tuning python tvm_meta_schedule.py -m googlenet-v1.json \ -p googlenet-v1.params \ -t "llvm -mcpu=core-avx2 --num-cores=6" \ -n 64 --max_trials_per_task 4 \ -o googlenet-v1.so cd ../inference python inference_tvm.py -mn googlenet-v1 -m googlenet-v1.so \ -w googlenet-v1.params -i data/ -b 4 \ -l labels/image_net_synset.txt -is 4 3 224 224 \ --not_softmax -t classification \ --channel_swap 2 1 0 --layout NCHW \ --input_name data --mean 0.408 0.459 0.482
-
TVM (Python API) to run on RISCV-V, we compiled the model on the host.
cd model_converters/tvm_converter/ python tvm_compiler.py -m googlenet-v1.json \ -p googlenet-v1.params \ -t "llvm -mtriple=riscv64-unknown-linux-gnu -mcpu=generic-rv64 -mabi=lp64d -mattr=+64bit,+m,+a,+f,+d,+c" \ --opt_level 0 --lib_name googlenet-v1.tar
The model compiled into the archive was then launched on the device.
cd model_converters/tvm_converter/ python inference_tvm.py -is 1 3 224 224 -i ILSVRC2012_val_00000023.JPEG \ -t classification -m caffe_googlenetv1_1_3_224_224_data.tar \ -b 1 -l labels/image_net_synset.txt -ol 0 -in data --layout NCHW \ --mean 0.408 0.459 0.482 --channel_swap 2 1 0 --not_softmax
Notes:
-
TensorFlow models were converted to ONNX format using tensorflow-onnx according to the developers' recommendations. We represent below command lines to convert several validated models. Supposed that all commands are executed from the directory used to download models from OMZ.
cd public/densenet-121-tf python -m tf2onnx.convert --saved-model densenet-121.savedmodel/ --output densenet-121-tf.onnx cd public/efficientnet-b0/efficientnet-b0 python -m tf2onnx.convert --saved-model saved_model/ --output efficientnet-b0.onnx cd public/googlenet-v4-tf python -m tf2onnx.convert --graphdef inception_v4.frozen.pb \ --output inception_v4.onnx \ --inputs input:0 --outputs InceptionV4/Logits/Predictions:0
Data source: ImageNet
Image resolution: 709 x 510
Model | Source Framework | Parameters | Python API (source framework) | Python API (TVM, source format) | Python API (TVM, TVM format) | Python API (TVM, TVM format, optimized) | Python API (TVM, TVM format, RISC-V) |
---|---|---|---|---|---|---|---|
densenet-121-tf | TensorFlow | Source and inference frameworks Mean: [123.68,116.78,103.94] Std: [58.395,57.12,57.375] |
0.9525882 Granny Smith 0.0132317 orange 0.0123400 lemon 0.0028143 banana 0.0020237 piggy bank, penny bank |
0.9525879 Granny Smith 0.0132317 orange 0.0123400 lemon 0.0028143 banana 0.0020238 piggy bank, penny bank |
0.9525879 Granny Smith 0.0132317 orange 0.0123400 lemon 0.0028143 banana 0.0020238 piggy bank, penny bank |
0.9525878 Granny Smith 0.0132318 orange 0.0123400 lemon 0.0028143 banana 0.0020237 piggy bank, penny bank |
0.9525879 Granny Smith 0.0132317 orange 0.0123400 lemon 0.0028143 banana 0.0020238 piggy bank, penny bank |
efficientnet-b0 | TensorFlow | Source frameworks Mean: 1.0 Inference framework Mean: [123.67500305175781, 116.27999877929688, 103.52999877929688] |
10.7427855 Granny Smith 4.9011354 lemon 4.3404164 bell pepper 4.3097715 orange 4.2483015 piggy bank, penny bank |
10.7427940 Granny Smith 4.9011383 lemon 4.3404155 bell pepper 4.3097682 orange 4.2482882 piggy bank, penny bank |
10.7427940 Granny Smith 4.9011383 lemon 4.3404155 bell pepper 4.3097682 orange 4.2482882 piggy bank, penny bank |
10.7427940 Granny Smith 4.9011383 lemon 4.3404155 bell pepper 4.3097682 orange 4.2482882 piggy bank, penny bank |
[TBD] |
googlenet-v1 | Caffe | Source framework Mean: [104.0,117.0,123.0] Inference framework Mean: [0.408,0.459,0.482] Std: None |
0.9979934 Granny Smith 0.0007394 bell pepper 0.0006985 candle, taper, wax light 0.0000942 tennis ball 0.0000636 cucumber, cuke |
0.9976785 Granny Smith 0.0008789 bell pepper 0.0007508 candle, taper, wax light 0.0001099 tennis ball 0.0000757 cucumber, cuke |
0.9976785 Granny Smith 0.0008789 bell pepper 0.0007508 candle, taper, wax light 0.0001099 tennis ball 0.0000757 cucumber, cuke |
0.9976785 Granny Smith 0.0008789 bell pepper 0.0007508 candle, taper, wax light 0.0001099 tennis ball 0.0000757 cucumber, cuke |
0.9976785 Granny Smith 0.0008789 bell pepper 0.0007508 candle, taper, wax light 0.0001099 tennis ball 0.0000757 cucumber, cuke |
googlenet-v4-tf | TensorFlow | Source and inference frameworks Mean: [127.5,127.5,127.5] Std: [127.5,127.5,127.5] |
0.9935190 Granny Smith 0.0002230 Rhodesian ridgeback 0.0000956 pineapple, ananas 0.0000868 hair slide 0.0000775 banana |
0.9934986 Granny Smith 0.0002234 Rhodesian ridgeback 0.0000959 pineapple, ananas 0.0000871 hair slide 0.0000778 banana |
0.9934986 Granny Smith 0.0002234 Rhodesian ridgeback 0.0000959 pineapple, ananas 0.0000871 hair slide 0.0000778 banana |
0.9934986 Granny Smith 0.0002234 Rhodesian ridgeback 0.0000959 pineapple, ananas 0.0000871 hair slide 0.0000778 banana |
0.9934986 Granny Smith 0.0002234 Rhodesian ridgeback 0.0000959 pineapple, ananas 0.0000871 hair slide 0.0000778 banana |
resnet-50-pytorch | PyTorch | Source framework Mean: [123.675,116.28,103.53] Std: [58.395,57.12,57.375] Inference framework Mean: [0.485,0.456,0.406] Std: [0.229, 0.224, 0.225] |
0.9278084 Granny Smith 0.0129410 orange 0.0059574 lemon 0.0042141 necklace 0.0025712 banana |
0.9278086 Granny Smith 0.0129410 orange 0.0059573 lemon 0.0042141 necklace 0.0025712 banana |
0.9278079 Granny Smith 0.0129411 orange 0.0059574 lemon 0.0042141 necklace 0.0025712 banana |
0.9278075 Granny Smith 0.0129411 orange 0.0059574 lemon 0.0042142 necklace 0.0025712 banana |
11.9825869 Granny Smith 7.7101669 orange 6.9343958 lemon 6.5882053 necklace 6.0941405 banana |
squeezenet1.1 | Caffe | Source framework Mean: [104.0,117.0,123.0] Inference framework Mean: [0.408,0.459,0.482] Std: None |
0.9993550 Granny Smith 0.0004808 tennis ball 0.0000693 fig 0.0000318 lemon 0.0000192 piggy bank, penny bank |
0.9995996 Granny Smith 0.0002680 tennis ball 0.0000614 fig 0.0000253 lemon 0.0000120 banana |
0.9995933 Granny Smith 0.0002719 tennis ball 0.0000625 fig 0.0000258 lemon 0.0000121 piggy bank, penny bank |
0.9995933 Granny Smith 0.0002719 tennis ball 0.0000625 fig 0.0000258 lemon 0.0000121 piggy bank, penny bank |
0.9995933 Granny Smith 0.0002719 tennis ball 0.0000625 fig 0.0000258 lemon 0.0000121 piggy bank, penny bank |
Data source: ImageNet
Image resolution: 500 x 500
Model | Source Framework | Parameters | Python API (source framework) | Python API (TVM, source format) | Python API (TVM, TVM format) | Python API (TVM, TVM format, optimized) | Python API (TVM, TVM format, RISC-V) |
---|---|---|---|---|---|---|---|
densenet-121-tf | TensorFlow | Source and inference frameworks Mean: [123.68,116.78,103.94] Std: [58.395,57.12,57.375] |
0.9847540 junco, snowbird 0.0068680 chickadee 0.0034511 brambling, Fringilla montifringilla 0.0015685 water ouzel, dipper 0.0012343 indigo bunting, indigo finch, indigo bird, Passerina cyanea |
0.9847607 junco, snowbird 0.0068680 chickadee 0.0034511 brambling, Fringilla montifringilla 0.0015686 water ouzel, dipper 0.0012343 indigo bunting, indigo finch, indigo bird, Passerina cyanea |
0.9847607 junco, snowbird 0.0068680 chickadee 0.0034511 brambling, Fringilla montifringilla 0.0015686 water ouzel, dipper 0.0012343 indigo bunting, indigo finch, indigo bird, Passerina cyanea |
0.9847606 junco, snowbird 0.0068680 chickadee 0.0034511 brambling, Fringilla montifringilla 0.0015685 water ouzel, dipper 0.0012343 indigo bunting, indigo finch, indigo bird, Passerina cyanea |
0.9847606 junco, snowbird 0.0068680 chickadee 0.0034511 brambling, Fringilla montifringilla 0.0015685 water ouzel, dipper 0.0012343 indigo bunting, indigo finch, indigo bird, Passerina cyanea |
efficientnet-b0 | TensorFlow | Source frameworks Mean: 1.0 Inference framework Mean: [123.67500305175781, 116.27999877929688, 103.52999877929688] |
7.7876987 junco, snowbird 5.7472515 chickadee 5.4858150 water ouzel, dipper 3.9586768 brambling, Fringilla montifringilla 3.1953719 bulbul |
7.7876949 junco, snowbird 5.7472472 chickadee 5.4858122 water ouzel, dipper 3.9586792 brambling, Fringilla montifringilla 3.1953740 bulbul |
7.7876949 junco, snowbird 5.7472472 chickadee 5.4858122 water ouzel, dipper 3.9586792 brambling, Fringilla montifringilla 3.1953740 bulbul |
7.7876949 junco, snowbird 5.7472472 chickadee 5.4858122 water ouzel, dipper 3.9586792 brambling, Fringilla montifringilla 3.1953740 bulbul |
[TBD] |
googlenet-v1 | Caffe | Source framework Mean: [104.0,117.0,123.0] Inference framework Mean: [0.408,0.459,0.482] Std: None |
0.9999735 junco, snowbird 0.0000203 chickadee 0.0000020 brambling, Fringilla montifringilla 0.0000016 house finch, linnet, Carpodacus mexicanus 0.0000016 water ouzel, dipper |
0.9999769 junco, snowbird 0.0000183 chickadee 0.0000017 brambling, Fringilla montifringilla 0.0000013 water ouzel, dipper 0.0000012 house finch, linnet, Carpodacus mexicanus |
0.9999769 junco, snowbird 0.0000183 chickadee 0.0000017 brambling, Fringilla montifringilla 0.0000013 water ouzel, dipper 0.0000012 house finch, linnet, Carpodacus mexicanus |
0.9999769 junco, snowbird 0.0000183 chickadee 0.0000017 brambling, Fringilla montifringilla 0.0000013 water ouzel, dipper 0.0000012 house finch, linnet, Carpodacus mexicanus |
0.9999769 junco, snowbird 0.0000183 chickadee 0.0000017 brambling, Fringilla montifringilla 0.0000013 water ouzel, dipper 0.0000012 house finch, linnet, Carpodacus mexicanus |
googlenet-v4-tf | TensorFlow | Source and inference frameworks Mean: [127.5,127.5,127.5] Std: [127.5,127.5,127.5] |
0.9398882 junco, snowbird 0.0005928 indigo bunting, indigo finch, indigo bird, Passerina cyanea 0.0005351 chickadee 0.0005287 brambling, Fringilla montifringilla 0.0004131 house finch, linnet, Carpodacus mexicanus |
0.9399365 junco, snowbird 0.0005925 indigo bunting, indigo finch, indigo bird, Passerina cyanea 0.0005340 chickadee 0.0005273 brambling, Fringilla montifringilla 0.0004121 house finch, linnet, Carpodacus mexicanus |
0.9399365 junco, snowbird 0.0005925 indigo bunting, indigo finch, indigo bird, Passerina cyanea 0.0005340 chickadee 0.0005273 brambling, Fringilla montifringilla 0.0004121 house finch, linnet, Carpodacus mexicanus |
0.9399366 junco, snowbird 0.0005925 indigo bunting, indigo finch, indigo bird, Passerina cyanea 0.0005340 chickadee 0.0005273 brambling, Fringilla montifringilla 0.0004121 house finch, linnet, Carpodacus mexicanus |
0.9399366 junco, snowbird 0.0005925 indigo bunting, indigo finch, indigo bird, Passerina cyanea 0.0005340 chickadee 0.0005273 brambling, Fringilla montifringilla 0.0004121 house finch, linnet, Carpodacus mexicanus |
resnet-50-pytorch | PyTorch | Source framework Mean: [123.675,116.28,103.53] Std: [58.395,57.12,57.375] Inference framework Mean: [0.485,0.456,0.406] Std: [0.229, 0.224, 0.225] |
0.9805019 junco, snowbird 0.0049154 goldfinch, Carduelis carduelis 0.0039196 chickadee 0.0038097 water ouzel, dipper 0.0028983 brambling, Fringilla montifringilla |
0.9805013 junco, snowbird 0.0049155 goldfinch, Carduelis carduelis 0.0039196 chickadee 0.0038098 water ouzel, dipper 0.0028983 brambling, Fringilla montifringilla |
0.9805013 junco, snowbird 0.0049154 goldfinch, Carduelis carduelis 0.0039196 chickadee 0.0038098 water ouzel, dipper 0.0028983 brambling, Fringilla montifringilla |
0.9805013 junco, snowbird 0.0049155 goldfinch, Carduelis carduelis 0.0039196 chickadee 0.0038098 water ouzel, dipper 0.0028983 brambling, Fringilla montifringilla |
16.2264042 junco, snowbird 10.9307261 goldfinch, Carduelis carduelis 10.7043276 chickadee 10.6759119 water ouzel, dipper 10.4024792 brambling, Fringilla montifringilla |
squeezenet1.1 | Caffe | Source framework Mean: [104.0,117.0,123.0] Inference framework Mean: [0.408,0.459,0.482] Std: None |
0.9897482 junco, snowbird 0.0094914 chickadee 0.0003794 brambling, Fringilla montifringilla 0.0002046 jay 0.0001124 indigo bunting, indigo finch, indigo bird, Passerina cyanea |
0.9902447 junco, snowbird 0.0087432 chickadee 0.0005967 brambling, Fringilla montifringilla 0.0002337 jay 0.0001153 indigo bunting, indigo finch, indigo bird, Passerina cyanea |
0.9904969 junco, snowbird 0.0084961 chickadee 0.0005932 brambling, Fringilla montifringilla 0.0002311 jay 0.0001166 indigo bunting, indigo finch, indigo bird, Passerina cyanea |
0.9904970 junco, snowbird 0.0084961 chickadee 0.0005932 brambling, Fringilla montifringilla 0.0002311 jay 0.0001166 indigo bunting, indigo finch, indigo bird, Passerina cyanea |
0.9904970 junco, snowbird 0.0084961 chickadee 0.0005932 brambling, Fringilla montifringilla 0.0002311 jay 0.0001166 indigo bunting, indigo finch, indigo bird, Passerina cyanea |
Data source: ImageNet
Image resolution: 333 x 500
Model | Source Framework | Parameters | Python API (source framework) | Python API (TVM, source format) | Python API (TVM, TVM format) | Python API (TVM, TVM format, optimized) | Python API (TVM, TVM format, RISC-V) |
---|---|---|---|---|---|---|---|
densenet-121-tf | TensorFlow | Source and inference frameworks Mean: [123.68,116.78,103.94] Std: [58.395,57.12,57.375] |
0.3048036 liner, ocean liner 0.1327114 breakwater, groin, groyne, mole, bulwark, seawall, jetty 0.1180263 container ship, containership, container vessel 0.0794732 drilling platform, offshore rig 0.0718437 dock, dockage, docking facility |
0.3048043 liner, ocean liner 0.1327112 breakwater, groin, groyne, mole, bulwark, seawall, jetty 0.1180268 container ship, containership, container vessel 0.0794735 drilling platform, offshore rig 0.0718434 dock, dockage, docking facility |
0.3048043 liner, ocean liner 0.1327112 breakwater, groin, groyne, mole, bulwark, seawall, jetty 0.1180268 container ship, containership, container vessel 0.0794735 drilling platform, offshore rig 0.0718434 dock, dockage, docking facility |
0.3048046 liner, ocean liner 0.1327105 breakwater, groin, groyne, mole, bulwark, seawall, jetty 0.1180269 container ship, containership, container vessel 0.0794733 drilling platform, offshore rig 0.0718436 dock, dockage, docking facility |
0.3048047 liner, ocean liner 0.1327110 breakwater, groin, groyne, mole, bulwark, seawall, jetty 0.1180270 container ship, containership, container vessel 0.0794734 drilling platform, offshore rig 0.0718434 dock, dockage, docking facility |
efficientnet-b0 | TensorFlow | Source frameworks Mean: 1.0 Inference framework Mean: [123.67500305175781, 116.27999877929688, 103.52999877929688] |
6.3245373 breakwater, groin, groyne, mole, bulwark, seawall, jetty 5.5929914 beacon, lighthouse, beacon light, pharos 5.5740662 liner, ocean liner 5.2268825 submarine, pigboat, sub, U-boat 5.1548510 lifeboat |
6.3245378 breakwater, groin, groyne, mole, bulwark, seawall, jetty 5.5929899 beacon, lighthouse, beacon light, pharos 5.5740643 liner, ocean liner 5.2268791 submarine, pigboat, sub, U-boat 5.1548443 lifeboat |
6.3245378 breakwater, groin, groyne, mole, bulwark, seawall, jetty 5.5929899 beacon, lighthouse, beacon light, pharos 5.5740643 liner, ocean liner 5.2268791 submarine, pigboat, sub, U-boat 5.1548443 lifeboat |
6.3245378 breakwater, groin, groyne, mole, bulwark, seawall, jetty 5.5929899 beacon, lighthouse, beacon light, pharos 5.5740643 liner, ocean liner 5.2268791 submarine, pigboat, sub, U-boat 5.1548443 lifeboat |
[TBD] |
googlenet-v1 | Caffe | Source framework Mean: [104.0,117.0,123.0] Inference framework Mean: [0.408,0.459,0.482] Std: None |
0.4644058 lifeboat 0.2018610 drilling platform, offshore rig 0.0871761 container ship, containership, container vessel 0.0759982 liner, ocean liner 0.0714861 beacon, lighthouse, beacon light, pharos |
0.4967317 lifeboat 0.1832319 drilling platform, offshore rig 0.0923501 container ship, containership, container vessel 0.0744570 liner, ocean liner 0.0563448 beacon, lighthouse, beacon light, pharos |
0.4967317 lifeboat 0.1832319 drilling platform, offshore rig 0.0923501 container ship, containership, container vessel 0.0744570 liner, ocean liner 0.0563448 beacon, lighthouse, beacon light, pharos |
0.4967313 lifeboat 0.1832318 drilling platform, offshore rig 0.0923506 container ship, containership, container vessel 0.0744572 liner, ocean liner 0.0563449 beacon, lighthouse, beacon light, pharos |
0.4967318 lifeboat 0.1832316 drilling platform, offshore rig 0.0923504 container ship, containership, container vessel 0.0744568 liner, ocean liner 0.0563448 beacon, lighthouse, beacon light, pharos |
googlenet-v4-tf | TensorFlow | Source and inference frameworks Mean: [127.5,127.5,127.5] Std: [127.5,127.5,127.5] |
0.4689647 beacon, lighthouse, beacon light, pharos 0.1695168 breakwater, groin, groyne, mole, bulwark, seawall, jetty 0.0433668 lifeboat 0.0310355 fireboat 0.0150613 dock, dockage, docking facility |
0.4704958 beacon, lighthouse, beacon light, pharos 0.1695943 breakwater, groin, groyne, mole, bulwark, seawall, jetty 0.0431099 lifeboat 0.0307508 fireboat 0.0149647 dock, dockage, docking facility |
0.4704958 beacon, lighthouse, beacon light, pharos 0.1695943 breakwater, groin, groyne, mole, bulwark, seawall, jetty 0.0431099 lifeboat 0.0307508 fireboat 0.0149647 dock, dockage, docking facility |
0.4704947 beacon, lighthouse, beacon light, pharos 0.1695949 breakwater, groin, groyne, mole, bulwark, seawall, jetty 0.0431100 lifeboat 0.0307508 fireboat 0.0149647 dock, dockage, docking facility |
0.4704950 beacon, lighthouse, beacon light, pharos 0.1695948 breakwater, groin, groyne, mole, bulwark, seawall, jetty 0.0431099 lifeboat 0.0307508 fireboat 0.0149647 dock, dockage, docking facility |
resnet-50-pytorch | PyTorch | Source framework Mean: [123.675,116.28,103.53] Std: [58.395,57.12,57.375] Inference framework Mean: [0.485,0.456,0.406] Std: [0.229,0.224,0.225] |
0.4759621 liner, ocean liner 0.1025402 breakwater, groin, groyne, mole, bulwark, seawall, jetty 0.0690002 container ship, containership, container vessel 0.0524496 dock, dockage, docking facility 0.0473782 pirate, pirate ship |
0.4759649 liner, ocean liner 0.1025411 breakwater, groin, groyne, mole, bulwark, seawall, jetty 0.0689997 container ship, containership, container vessel 0.0524497 dock, dockage, docking facility 0.0473772 pirate, pirate ship |
0.4759648 liner, ocean liner 0.1025408 breakwater, groin, groyne, mole, bulwark, seawall, jetty 0.0689995 container ship, containership, container vessel 0.0524497 dock, dockage, docking facility 0.0473774 pirate, pirate ship |
0.4759627 liner, ocean liner 0.1025414 breakwater, groin, groyne, mole, bulwark, seawall, jetty 0.0689999 container ship, containership, container vessel 0.0524496 dock, dockage, docking facility 0.0473778 pirate, pirate ship |
10.1021738 liner, ocean liner 8.5670938 breakwater, groin, groyne, mole, bulwark, seawall, jetty 8.1709299 container ship, containership, container vessel 7.8966804 dock, dockage, docking facility 7.7949758 pirate, pirate ship |
squeezenet1.1 | Caffe | Source framework Mean: [104.0,117.0,123.0] Inference framework Mean: [0.408,0.459,0.482] Std: None |
0.5661172 lifeboat 0.2700349 drilling platform, offshore rig 0.0876362 liner, ocean liner 0.0250453 container ship, containership, container vessel 0.0135069 submarine, pigboat, sub, U-boat |
0.6992825 lifeboat 0.1367239 drilling platform, offshore rig 0.0986513 liner, ocean liner 0.0202083 container ship, containership, container vessel 0.0170821 submarine, pigboat, sub, U-boat |
0.6996598 lifeboat 0.1369749 drilling platform, offshore rig 0.0978115 liner, ocean liner 0.0204584 container ship, containership, container vessel 0.0170495 submarine, pigboat, sub, U-boat |
0.6996598 lifeboat 0.1369744 drilling platform, offshore rig 0.0978120 liner, ocean liner 0.0204584 container ship, containership, container vessel 0.0170495 submarine, pigboat, sub, U-boat |
0.6996594 lifeboat 0.1369754 drilling platform, offshore rig 0.0978113 liner, ocean liner 0.0204583 container ship, containership, container vessel 0.0170496 submarine, pigboat, sub, U-boat |
Data source: ImageNet
Image resolution: 709 x 510
Bounding boxes (upper left and bottom right corners):(55,155), (236,375)
(190,190), (380,400)
(374,209), (588,422)
(289,111), (440,255)
(435,160), (615,310)
Model | Source Framework | Parameters | Python API (source framework) | Python API (TVM, source format) | Python API (TVM, TVM format) |
---|---|---|---|---|---|
ssd_512_resnet50_v1_coco | MXNet | Source framework Mean: [0.485, 0.456, 0.406] Std: [0.229, 0.224, 0.225] Inference framework Mean: [0.485, 0.456, 0.406] Std: [0.229, 0.224, 0.225] |
Bounding box: APPLE (261, 197), (421, 409); APPLE (50, 167), (168, 345); APPLE (213, 133), (315, 288); APPLE (309, 147), (443, 291); APPLE (177, 134), (440, 396); APPLE (134, 177), (298, 385) |
Bounding box: APPLE (261, 197), (421, 409); APPLE (50, 167), (168, 345); APPLE (213, 133), (315, 288); APPLE (309, 147), (443, 291); APPLE (177, 134), (440, 396); APPLE (134, 177), (298, 385) |
Bounding box: APPLE (261, 197), (421, 409); APPLE (50, 167), (168, 345); APPLE (213, 133), (315, 288); APPLE (309, 147), (443, 291); APPLE (177, 134), (440, 396); APPLE (134, 177), (298, 385) |
ssd_512_mobilenet1.0_coco | MXNet | Source framework Mean: [0.485, 0.456, 0.406] Std: [0.229, 0.224, 0.225] Inference framework Mean: [0.485, 0.456, 0.406] Std: [0.229, 0.224, 0.225] |
Bounding box: APPLE (280, 209), (422, 414); APPLE (54, 168), (165, 353); APPLE (137, 203), (263, 385); APPLE (215, 133), (316, 292) |
Bounding box: APPLE (280, 209), (422, 414); APPLE (54, 168), (165, 353); APPLE (137, 203), (263, 385); APPLE (215, 133), (316, 292) |
Bounding box: APPLE (280, 209), (422, 414); APPLE (54, 168), (165, 353); APPLE (137, 203), (263, 385); APPLE (215, 133), (316, 292) |
maskrcnn_resnet50_fpn | PyTorch | - | - | Bounding box: APPLE (30, 100), (99, 204); APPLE (160, 120), (250, 246); APPLE (126, 76), (185, 168); APPLE (182, 88), (257, 166) |
Bounding box: APPLE (30, 100), (99, 204); APPLE (160, 120), (250, 246); APPLE (126, 76), (185, 168); APPLE (182, 88), (257, 166) |
Data source: ImageNet
Image resolution: 500 x 500
Bounding box (upper left and bottom right corners):(117,86), (365,465)
Model | Source Framework | Parameters | Python API (source framework) | Python API (TVM, source format) | Python API (TVM, TVM format) |
---|---|---|---|---|---|
ssd_512_resnet50_v1_coco | MXNet | Source framework Mean: [0.485, 0.456, 0.406] Std: [0.229, 0.224, 0.225] Inference framework Mean: [0.485, 0.456, 0.406] Std: [0.229, 0.224, 0.225] |
Bounding box: BIRD (65, 94), (354, 486) |
Bounding box: BIRD (65, 94), (354, 486) |
Bounding box: BIRD (65, 94), (354, 486) |
ssd_512_vgg16_atrous_voc | MXNet | Source framework Mean: [0.485, 0.456, 0.406] Std: [0.229, 0.224, 0.225] Inference framework Mean: [0.485, 0.456, 0.406] Std: [0.229, 0.224, 0.225] |
Bounding box: BIRD (78, 107), (359, 452) |
Bounding box: BIRD (78, 107), (359, 452) |
Bounding box: BIRD (78, 107), (359, 452) |
ssd_300_vgg16_atrous_voc | MXNet | Source framework Mean: [0.485, 0.456, 0.406] Std: [0.229, 0.224, 0.225] Inference framework Mean: [0.485, 0.456, 0.406] Std: [0.229, 0.224, 0.225] |
Bounding box: BIRD (38, 56), (205, 272) |
Bounding box: BIRD (38, 56), (205, 272) |
Bounding box: BIRD (38, 56), (205, 272) |
ssd_512_mobilenet1.0_coco | MXNet | Source framework Mean: [0.485, 0.456, 0.406] Std: [0.229, 0.224, 0.225] Inference framework Mean: [0.485, 0.456, 0.406] Std: [0.229, 0.224, 0.225] |
Bounding box: BIRD (86, 100), (347, 450) |
Bounding box: BIRD (86, 100), (347, 450) |
Bounding box: BIRD (86, 100), (347, 450) |
maskrcnn_resnet50_fpn | PyTorch | - | - | Bounding box: BIRD (40, 60), (204, 270) |
Bounding box: BIRD (40, 60), (204, 270) |
Data source: MS COCO
Image resolution: 640 x 427
Bounding box (upper left and bottom right corners):PERSON (86, 84), (394, 188)
HORSE (44, 108), (397, 565)
Model | Source Framework | Parameters | Python API (source framework) | Python API (TVM, source format) | Python API (TVM, TVM format) |
---|---|---|---|---|---|
ssd_512_resnet50_v1_coco | MXNet | Source framework Mean: [0.485, 0.456, 0.406] Std: [0.229, 0.224, 0.225] Inference framework Mean: [0.485, 0.456, 0.406] Std: [0.229, 0.224, 0.225] |
Bounding box: PERSON (75, 96), (153, 478); HORSE (121, 58), (424, 454) |
Bounding box: PERSON (75, 96), (153, 478); HORSE (121, 58), (424, 454) |
Bounding box: PERSON (75, 96), (153, 478); HORSE (121, 58), (424, 454) |
ssd_512_mobilenet1.0_coco | MXNet | Source framework Mean: [0.485, 0.456, 0.406] Std: [0.229, 0.224, 0.225] Inference framework Mean: [0.485, 0.456, 0.406] Std: [0.229, 0.224, 0.225] |
Bounding box: PERSON (70, 89), (164, 470); HORSE (126, 57), (391, 469) |
Bounding box: PERSON (70, 89), (164, 470); HORSE (126, 57), (391, 469) |
Bounding box: PERSON (70, 89), (164, 470); HORSE (126, 57), (391, 469) |
maskrcnn_resnet50_fpn | PyTorch | - | - | Bounding box: PERSON (45, 50), (92, 282); HORSE (51, 41), (249, 263) |
Bounding box: PERSON (45, 50), (92, 282); HORSE (51, 41), (249, 263) |