-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdvs_movie.m
187 lines (168 loc) · 6.7 KB
/
dvs_movie.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
function [output] = dvs_movie(x, y, pol, ts, varargin)
% extension of events_film which is functional
%displayDVSdata allows to display dvs data recorded with DAVIS (AEDAT 1.0/2.0).
%4 required inputs are the outputs the getDVSeventsDavis:
% x = column vector which contains the x addresses of the DVS events
% y = column vector which contains the y addresses of the DVS events
% pol = column vector which contains the polarity values of the DVS events
% ts = column vector which contains the timestamps of the DVS events
%
%Optional arguments can be entered using the format
%displayDVSdata(x,y,pol,ts,'mode', 'scattered', 'sensor', 'DAVIS240','fps',
%200, 'epg', 10000).
%For more information check the inputParser class on the Mathworks website.
%
%Optional parameters:
% mode = two types of representation are available:
% - scattered: data are plotted using the scatter3 matlab function.
% Pictures are generated in the working folder. By default 20000 events are displayed
% in each graph.
%
% - frame: DVS events are rearranged in a 4-D matrix (RGB frames). A video is
% generated using immovie and implay.
%
% sensor = it defines the resolution of the video\graph. Currently the
% following sensors are supported:
% DVS128,DAVIS240,DAVIS346,DAVIS640
%
% fps (frames per second) = it is associated with the frame mode. It
% represents the "assumed" frame speed and it is used to determine
% the number of frames used to display data.
%
% epg (events per graph) = it is associated with the scatterd mode. It
% represents the number of events displayed in each image.
%The output:
% - Scattered mode = 1;
% - Frame mode = movie structure array;
% - Wrong argument for the type of representation =0;
%Author: Andrea Palombi [email protected]
%Date: 19/04/2016
% inputParser class is used to manage the arguments of the function
p = inputParser;
%Parameters associated with the optional arguments
defaultMode = 'frame';
validModes = {'frame','scattered'};
checkMode = @(x) any(validatestring(x,validModes));
defaultSensor = 'DVS128';
%%defaultSensor = 'DAVIS240';
validSensors = {'DVS128','DAVIS240','DAVIS346','DAVIS640'};
checkSensor = @(x) any(validatestring(x,validSensors));
defaultFPS = 60;
checkFPS = @(x) isinteger(x) && (x>0);
defaultEPG = 20000;
checkEPG = @(x) isinteger(x) && (x>0);
%Required arguments
addRequired(p,'x');
addRequired(p,'y');
addRequired(p,'pol');
addRequired(p,'ts');
%Optional arguments
addOptional(p,'mode',defaultMode,checkMode);
addOptional(p,'sensor',defaultSensor,checkSensor);
addOptional(p,'fps',defaultFPS, checkFPS);
addOptional(p,'epg',defaultEPG, checkEPG);
parse(p,x,y,pol,ts,varargin{:});
%it displays the arguments for which default values are used
if ~isempty(p.UsingDefaults)
disp('Using defaults: ')
disp(p.UsingDefaults)
end
%events are divided depending on their polarity
logical_pol = logical(pol);
x_incr = x(logical_pol);
y_incr = y(logical_pol);
ts_incr = ts(logical_pol);
x_decr = x(~logical_pol);
y_decr = y(~logical_pol);
ts_decr = ts(~logical_pol);
if strcmpi(p.Results.sensor, 'DAVIS240')
res_x = 240;
res_y = 180;
elseif strcmpi(p.Results.sensor, 'DVS128')
res_x = 128;
res_y = 128;
% additional conditions need to be added for DAVIS346, DAVIS640
end
% %scattered representation
% if strcmpi(p.Results.mode, 's') || strcmpi(p.Results.mode, 'scattered')
% work_in_progress = 0;
% for i=ts(1):p.Results.epg:ts(end)
% if work_in_progress==0;
% fprintf('Images are being generated, please wait\n');
% work_in_progress=1;
% end
% fprintf('...');
% %it generates a figure element which is not displayed
% figure('name', 'DVS Scattered Data','Visible','off')
% %it creates a mask to identify the events with polarity = 1, in the
% %time interval we are going to represent
% incr_mask = ts_incr >= i & ts_incr < i+p.Results.epg;
% %It plots events with polarity = 1
% scatter3(x_incr(incr_mask), ts_incr(incr_mask), y_incr(incr_mask), 1, 'g');
% hold on
% %it creates a mask to identify the events with polarity = 0, in the
% %time interval we are going to represent
% decr_mask = ts_decr >= i & ts_decr < i+p.Results.epg;
% %It plots events with polarity = 0
% scatter3(x_decr(decr_mask), ts_decr(decr_mask), y_decr(decr_mask), 1, 'r');
% %axes formatting
% axis([0 res_x i i+p.Results.epg-1 0 res_y]);
% strx = sprintf('X Pixel [0 %f]',res_x);
% xlabel(strx);
% ylabel('Timestamps [\mus]');
% strz = sprintf('Y Pixel [0 %f]',res_y);
% zlabel(strz);
% %The graph is saved in the working folder
% filename = ['DVS ' num2str(i) ' to' num2str(i+19999) ' microseconds.jpg'];
% saveas(gcf, filename);
% end
% fprintf('\nImages have been successfully generated\n');
% output = 1;
% %frame representation
strcmpi(p.Results.mode, 'f') || strcmpi(p.Results.mode, 'frame')
%time interval in seconds
delta_t = double(ts(end)-ts(1))/1000000;
%assuming 60FPS (rounded up to the next integer) we determine how many
%frames do we need to represent our dvs events
n_frames = ceil(p.Results.fps*delta_t);
%4-D array is generated for the video (first 3 dimensions = RGB image)
dvs_frames = zeros(res_x,res_y,3,n_frames);
size(dvs_frames);
loop_limit = max(length(x_incr),length(x_decr));
for i = 1:loop_limit
if i<= length(x_incr)
%coefficient required to associate an event with a frame
frame_incr = ceil((double(ts_incr(i)-ts(1)))/((double(ts(end)-ts(1)))/n_frames));
if frame_incr == 0
frame_incr = 1;
end
dvs_frames(x_incr(i)+1,y_incr(i)+1,2,frame_incr) = 255;
end
if i<= length(x_decr)
frame_decr = ceil((double(ts_decr(i)-ts(1)))/((double(ts(end)-ts(1)))/n_frames));
if frame_decr == 0
frame_decr = 1;
end
dvs_frames(x_decr(i)+1,y_decr(i)+1,1,frame_decr) = 255;
end
end
%movie structure array
fprintf('\nsize\n');
size(rot90(dvs_frames))
aa1 = rot90(dvs_frames);
aa2 = aa1 * 3;
aa3 = aa2 * 3;
size(aa3)
aa_all(:,:,:,1) = [aa1];
aa_all(:,:,:,2) = [aa2];
aa_all(:,:,:,3) = [aa3];
size(aa_all)
output = immovie(aa_all);
implay(output); %if condition to choose the type of plot
%output = immovie(rot90(dvs_frames));
%load (cellsequence);
%implay (cellsequence);
if nargout == 0
assignin('base','output',output);
end
end %function end