forked from PaddlePaddle/PGL
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
215 lines (180 loc) · 7.09 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import sys
import time
import warnings
from collections import defaultdict
import paddle
import numpy as np
from paddle.optimizer.lr import StepDecay
from dataset.reader import read_trigraph
from dataset.dataset import create_dataloaders
from models.ke_model import KGEModel
from models.loss_func import LossFunction
from utils import set_seed, set_logger, print_log
from utils import evaluate
from config import prepare_config
def main():
"""Main function for shallow knowledge embedding methods.
"""
args = prepare_config()
set_seed(args.seed)
set_logger(args)
trigraph = read_trigraph(args.data_path, args.data_name, args.use_dict,
args.kv_mode)
if args.valid_percent < 1:
trigraph.sampled_subgraph(args.valid_percent, dataset='valid')
use_filter_set = args.filter_sample or args.filter_eval or args.weighted_loss
if use_filter_set:
filter_dict = {
'head': trigraph.true_heads_for_tail_rel,
'tail': trigraph.true_tails_for_head_rel
}
else:
filter_dict = None
model = KGEModel(args.model_name, trigraph, args)
if args.async_update:
model.start_async_update()
if len(model.parameters()) > 0:
if args.optimizer == 'adam':
optim_func = paddle.optimizer.Adam
elif args.optimizer == 'adagrad':
optim_func = paddle.optimizer.Adagrad
else:
errors = 'Optimizer {} not supported!'.format(args.optimizer)
raise ValueError(errors)
if args.scheduler_interval > 0:
scheduler = StepDecay(
learning_rate=args.lr,
step_size=args.scheduler_interval,
gamma=0.5,
last_epoch=-1,
verbose=True)
optimizer = optim_func(
learning_rate=scheduler,
epsilon=1e-10,
parameters=model.parameters())
else:
optimizer = optim_func(
learning_rate=args.lr,
epsilon=1e-10,
parameters=model.parameters())
else:
warnings.warn('There is no model parameter on gpu, optimizer is None.',
RuntimeWarning)
optimizer = None
loss_func = LossFunction(
name=args.loss_type,
pairwise=args.pairwise,
margin=args.margin,
neg_adv_spl=args.neg_adversarial_sampling,
neg_adv_temp=args.adversarial_temperature)
train_loader, valid_loader, test_loader = create_dataloaders(
trigraph,
args,
filter_dict=filter_dict if use_filter_set else None,
shared_ent_path=model.shared_ent_path if args.mix_cpu_gpu else None)
timer = defaultdict(int)
log = defaultdict(int)
ts = t_step = time.time()
step = 1
stop = False
for epoch in range(args.num_epoch):
for indexes, prefetch_embeddings, mode in train_loader:
h, r, t, neg_ents, all_ents = indexes
all_ents_emb, rel_emb, weights = prefetch_embeddings
r = r.cuda()
if all_ents is not None:
all_ents = all_ents.cuda()
if rel_emb is not None:
rel_emb = rel_emb.cuda()
rel_emb.stop_gradient = False
if all_ents_emb is not None:
all_ents_emb = all_ents_emb.cuda()
all_ents_emb.stop_gradient = False
timer['sample'] += (time.time() - ts)
ts = time.time()
h_emb, r_emb, t_emb, neg_emb, mask = model.prepare_inputs(
h, r, t, all_ents, neg_ents, all_ents_emb, rel_emb, mode, args)
pos_score = model.forward(h_emb, r_emb, t_emb)
if mode == 'head':
neg_score = model.get_neg_score(t_emb, r_emb, neg_emb, True,
mask)
elif mode == 'tail':
neg_score = model.get_neg_score(h_emb, r_emb, neg_emb, False,
mask)
else:
raise ValueError('Unsupported negative mode {}.'.format(mode))
neg_score = neg_score.reshape([args.batch_size, -1])
loss = loss_func(pos_score, neg_score, weights)
log['loss'] += float(loss)
if args.use_embedding_regularization:
reg_loss = model.get_regularization(h_emb, r_emb, t_emb,
neg_emb)
log['reg'] += float(reg_loss)
loss = loss + reg_loss
timer['forward'] += (time.time() - ts)
ts = time.time()
loss.backward()
timer['backward'] += (time.time() - ts)
ts = time.time()
if optimizer is not None:
optimizer.step()
optimizer.clear_grad()
if args.mix_cpu_gpu:
ent_trace, rel_trace = model.create_trace(
all_ents, all_ents_emb, r, r_emb)
model.step(ent_trace, rel_trace)
else:
model.step()
timer['update'] += (time.time() - ts)
if args.log_interval > 0 and (step + 1) % args.log_interval == 0:
print_log(step, args.log_interval, log, timer,
time.time() - t_step)
timer = defaultdict(int)
log = defaultdict(int)
t_step = time.time()
if args.valid and (step + 1) % args.eval_interval == 0:
evaluate(
model,
valid_loader,
'valid',
filter_dict if args.filter_eval else None,
data_mode=args.data_name)
if args.scheduler_interval > 0 and step % args.scheduler_interval == 0:
scheduler.step()
step += 1
if args.save_interval > 0 and step % args.save_interval == 0:
model.save(args.step_path)
if step >= args.max_steps:
stop = True
break
ts = time.time()
if stop:
break
if args.async_update:
model.finish_async_update()
if args.test:
evaluate(
model,
test_loader,
'test',
filter_dict if args.filter_eval else None,
args.save_path,
data_mode=args.data_name)
paddle.save(model.state_dict(),
os.path.join(args.save_path, "params.pdparams"))
if __name__ == '__main__':
main()