forked from PaddlePaddle/PGL
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
280 lines (247 loc) · 9.6 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import csv
import math
import json
import time
import random
import logging
import functools
import traceback
from collections import defaultdict
from _thread import start_new_thread
from multiprocessing import Queue, Process
import numpy as np
from tqdm import tqdm
import paddle
import paddle.distributed as dist
def set_seed(seed):
"""Set seed for reproduction.
"""
seed = seed + dist.get_rank()
random.seed(seed)
np.random.seed(seed)
paddle.seed(seed)
os.environ['PYTHONHASHSEED'] = str(seed)
def set_logger(args):
"""Write logs to console and log file.
"""
log_file = os.path.join(args.save_path, 'train.log')
logging.basicConfig(
format='%(asctime)s %(levelname)-8s %(message)s',
level=logging.INFO,
datefmt='%Y-%m-%d %H:%M:%S',
filename=log_file,
filemode='a+')
if args.print_on_screen:
console = logging.StreamHandler()
console.setLevel(logging.INFO)
formatter = logging.Formatter(
'%(asctime)s %(levelname)-8s %(message)s')
console.setFormatter(formatter)
logging.getLogger('').addHandler(console)
for arg in vars(args):
logging.info('{:20}:{}'.format(arg, getattr(args, arg)))
def print_log(step, interval, log, timer, time_sum):
"""Print log to logger.
"""
logging.info(
'[GPU %d] step: %d, loss: %.5f, reg: %.4e, speed: %.2f steps/s, time: %.2f s' %
(dist.get_rank(), step, log['loss'] / interval, log['reg'] / interval,
interval / time_sum, time_sum))
logging.info('sample: %f, forward: %f, backward: %f, update: %f' % (
timer['sample'], timer['forward'], timer['backward'], timer['update']))
def uniform(low, high, size, dtype=np.float32, seed=0):
"""Memory efficient uniform implementation.
"""
rng = np.random.default_rng(seed)
out = (high - low) * rng.random(size, dtype=dtype) + low
return out
def timer_wrapper(name):
"""Time counter wrapper.
"""
def decorate(func):
"""decorate func
"""
@functools.wraps(func)
def wrapper(*args, **kwargs):
"""wrapper func
"""
logging.info(f'[{name}] start...')
ts = time.time()
result = func(*args, **kwargs)
te = time.time()
costs = te - ts
if costs < 1e-4:
cost_str = '%f sec' % costs
elif costs > 3600:
cost_str = '%.4f sec (%.4f hours)' % (costs, costs / 3600.)
else:
cost_str = '%.4f sec' % costs
logging.info(f'[{name}] finished! It takes {cost_str} s')
return result
return wrapper
return decorate
def calculate_metrics(scores, corr_idxs, filter_list):
"""Calculate metrics according to scores.
"""
logs = []
for i in range(scores.shape[0]):
rank = (scores[i] > scores[i][corr_idxs[i]]).astype('float32')
if filter_list is not None:
mask = paddle.ones(rank.shape, dtype='float32')
mask[filter_list[i]] = 0.
rank = rank * mask
rank = paddle.sum(rank) + 1
logs.append({
'MRR': 1.0 / rank,
'MR': float(rank),
'HITS@1': 1.0 if rank <= 1 else 0.0,
'HITS@3': 1.0 if rank <= 3 else 0.0,
'HITS@10': 1.0 if rank <= 10 else 0.0,
})
return logs
def evaluate_wikikg2(model, loader, mode, save_path):
from ogb.linkproppred import Evaluator
evaluator = Evaluator(name='ogbl-wikikg2')
model.eval()
with paddle.no_grad():
y_pred_pos = []
y_pred_neg = []
for h, r, t, neg_h, neg_t in tqdm(loader):
pos_h = model._get_ent_embedding(h)
pos_r = model._get_rel_embedding(r)
pos_t = model._get_ent_embedding(t)
y_pred_pos.append(model(pos_h, pos_r, pos_t).numpy())
y_neg_head = model.predict(t, r, neg_h, mode='head').numpy()
y_neg_tail = model.predict(h, r, neg_t, mode='tail').numpy()
y_pred_neg.append(np.concatenate([y_neg_head, y_neg_tail], axis=1))
y_pred_pos = np.concatenate(y_pred_pos, axis=0)
y_pred_neg = np.concatenate(y_pred_neg, axis=0)
input_dict = {'y_pred_pos': y_pred_pos, 'y_pred_neg': y_pred_neg}
result = evaluator.eval(input_dict)
logging.info('-- %s results ------------' % mode)
logging.info(' ' + ' '.join(
['{}: {}'.format(k, v.mean()) for k, v in result.items()]))
def evaluate_wikikg90m(model, loader, mode, save_path):
from ogb.lsc import WikiKG90MEvaluator
evaluator = WikiKG90MEvaluator()
model.eval()
with paddle.no_grad():
top_tens = []
corr_idx = []
for h, r, t_idx, cand_t in tqdm(loader):
score = model.predict(h, r, cand_t)
rank = paddle.argsort(score, axis=1, descending=True)
top_tens.append(rank[:, :10].numpy())
corr_idx.append(t_idx.numpy())
t_pred_top10 = np.concatenate(top_tens, axis=0)
t_correct_index = np.concatenate(corr_idx, axis=0)
input_dict = {}
if mode == 'valid':
input_dict['h,r->t'] = {
't_pred_top10': t_pred_top10,
't_correct_index': t_correct_index
}
result = evaluator.eval(input_dict)
logging.info('-- %s results -------------' % mode)
logging.info(' '.join(
['{}: {}'.format(k, v) for k, v in result.items()]))
else:
input_dict['h,r->t'] = {'t_pred_top10': t_pred_top10}
evaluator.save_test_submission(
input_dict=input_dict, dir_path=save_path)
@timer_wrapper('evaluation')
def evaluate(model,
loader,
evaluate_mode='test',
filter_dict=None,
save_path='./tmp/',
data_mode='hrt'):
"""Evaluate given KGE model.
"""
if data_mode == 'wikikg2':
evaluate_wikikg2(model, loader, evaluate_mode, save_path)
elif data_mode == 'wikikg90m':
evaluate_wikikg90m(model, loader, evaluate_mode, save_path)
else:
model.eval()
with paddle.no_grad():
h_metrics = []
t_metrics = []
output = {'h,r->t': {}, 't,r->h': {}, 'average': {}}
for h, r, t in tqdm(loader):
t_score = model.predict(h, r, mode='tail')
h_score = model.predict(t, r, mode='head')
if filter_dict is not None:
h_filter_list = [
filter_dict['head'][(ti, ri)]
for ti, ri in zip(t.numpy(), r.numpy())
]
t_filter_list = [
filter_dict['tail'][(hi, ri)]
for hi, ri in zip(h.numpy(), r.numpy())
]
else:
h_filter_list = None
t_filter_list = None
h_metrics += calculate_metrics(h_score, h, h_filter_list)
t_metrics += calculate_metrics(t_score, t, t_filter_list)
for metric in h_metrics[0].keys():
output['t,r->h'][metric] = np.mean(
[x[metric] for x in h_metrics])
output['h,r->t'][metric] = np.mean(
[x[metric] for x in t_metrics])
output['average'][metric] = (
output['t,r->h'][metric] + output['h,r->t'][metric]) / 2
logging.info('-------------- %s result --------------' %
evaluate_mode)
logging.info('t,r->h |' + ' '.join(
['{}: {}'.format(k, v) for k, v in output['t,r->h'].items()]))
logging.info('h,r->t |' + ' '.join(
['{}: {}'.format(k, v) for k, v in output['h,r->t'].items()]))
logging.info('average |' + ' '.join(
['{}: {}'.format(k, v) for k, v in output['average'].items()]))
logging.info('-----------------------------------------')
def gram_schimidt_process(embeds, num_elem, use_scale):
""" Orthogonalize embeddings.
"""
num_embed = embeds.shape[0]
assert embeds.shape[1] == num_elem
assert embeds.shape[2] == (num_elem + int(use_scale))
if use_scale:
scales = embeds[:, :, -1]
embeds = embeds[:, :, :num_elem]
u = [embeds[:, 0]]
uu = [0] * num_elem
uu[0] = (u[0] * u[0]).sum(axis=-1)
u_d = embeds[:, 1:]
ushape = (num_embed, 1, -1)
for i in range(1, num_elem):
tmp_a = (embeds[:, i:] * u[i - 1].reshape(ushape)).sum(axis=-1)
tmp_b = uu[i - 1].reshape((num_embed, -1))
tmp_u = (tmp_a / tmp_b).reshape((num_embed, -1, 1))
u_d = u_d - u[-1].reshape(ushape) * tmp_u
u_i = u_d[:, 0]
if u_d.shape[1] > 1:
u_d = u_d[:, 1:]
uu[i] = (u_i * u_i).sum(axis=-1)
u.append(u_i)
u = np.stack(u, axis=1)
u_norm = np.linalg.norm(u, axis=-1, keepdims=True)
u = u / u_norm
if use_scale:
u = np.concatenate([u, scales.reshape((num_embed, -1, 1))], axis=-1)
return u