forked from PaddlePaddle/PGL
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
307 lines (253 loc) · 10.4 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This file implement the training process of GATNE model.
"""
import os
import argparse
import time
import numpy as np
import logging
import pickle as pkl
import pgl
from pgl.utils import paddle_helper
import paddle
import paddle.fluid as fluid
import paddle.fluid.layers as fl
from utils import *
import Dataset
import model as Model
from sklearn.metrics import (auc, f1_score, precision_recall_curve,
roc_auc_score)
def set_seed(seed):
"""Set random seed.
"""
random.seed(seed)
np.random.seed(seed)
def produce_model(exe, program, dataset, model, feed_dict):
"""Output the learned model parameters for testing.
"""
edge_types = dataset.edge_types
num_nodes = dataset.graph[edge_types[0]].num_nodes
edge_types_count = len(edge_types)
neg_num = dataset.config['neg_num']
final_model = {}
feed_dict['train_inputs'] = np.array(
[n for n in range(num_nodes)], dtype=np.int64).reshape(-1, )
feed_dict['train_labels'] = np.array(
[n for n in range(num_nodes)], dtype=np.int64).reshape(-1, 1, 1)
feed_dict['train_negs'] = np.tile(feed_dict['train_labels'],
(1, neg_num)).reshape(-1, neg_num, 1)
for i in range(edge_types_count):
feed_dict['train_types'] = np.array(
[i for _ in range(num_nodes)], dtype=np.int64).reshape(-1, 1)
edge_node_embed = exe.run(program,
feed=feed_dict,
fetch_list=[model.last_node_embed],
return_numpy=True)[0]
final_model[edge_types[i]] = edge_node_embed
return final_model
def evaluate(final_model, edge_types, data):
"""Calculate the AUC score, F1 score and PR score of the final model
"""
edge_types_count = len(edge_types)
AUC, F1, PR = [], [], []
true_edge_data_by_type = data[0]
fake_edge_data_by_type = data[1]
for i in range(edge_types_count):
try:
local_model = final_model[edge_types[i]]
true_edges = true_edge_data_by_type[edge_types[i]]
fake_edges = fake_edge_data_by_type[edge_types[i]]
except Exception as e:
logging.warn('edge type not exists. %s' % str(e))
continue
tmp_auc, tmp_f1, tmp_pr = calculate_score(local_model, true_edges,
fake_edges)
AUC.append(tmp_auc)
F1.append(tmp_f1)
PR.append(tmp_pr)
return {'AUC': np.mean(AUC), 'F1': np.mean(F1), 'PR': np.mean(PR)}
def calculate_score(model, true_edges, fake_edges):
"""Calculate the AUC score, F1 score and PR score of specified edge type
"""
true_list = list()
prediction_list = list()
true_num = 0
for edge in true_edges:
tmp_score = get_score(model, edge)
if tmp_score is not None:
true_list.append(1)
prediction_list.append(tmp_score)
true_num += 1
for edge in fake_edges:
tmp_score = get_score(model, edge)
if tmp_score is not None:
true_list.append(0)
prediction_list.append(tmp_score)
sorted_pred = prediction_list[:]
sorted_pred.sort()
threshold = sorted_pred[-true_num]
y_pred = np.zeros(len(prediction_list), dtype=np.int32)
for i in range(len(prediction_list)):
if prediction_list[i] >= threshold:
y_pred[i] = 1
y_true = np.array(true_list)
y_scores = np.array(prediction_list)
ps, rs, _ = precision_recall_curve(y_true, y_scores)
return roc_auc_score(y_true, y_scores), f1_score(y_true, y_pred), auc(rs,
ps)
def get_score(local_model, edge):
"""Calculate the cosine similarity score between two nodes.
"""
try:
vector1 = local_model[edge[0]]
vector2 = local_model[edge[1]]
return np.dot(vector1, vector2) / (np.linalg.norm(vector1) *
np.linalg.norm(vector2))
except Exception as e:
logging.warn('get_score warning: %s' % str(e))
return None
pass
def run_epoch(epoch,
config,
dataset,
data,
train_prog,
test_prog,
model,
feed_dict,
exe,
for_test=False):
"""Run training process of every epoch.
"""
total_loss = []
for idx, batch_data in enumerate(data):
feed_dict['train_inputs'] = batch_data[0]
feed_dict['train_labels'] = batch_data[1]
feed_dict['train_negs'] = batch_data[2]
feed_dict['train_types'] = batch_data[3]
loss, lr = exe.run(train_prog,
feed=feed_dict,
fetch_list=[model.loss, model.lr],
return_numpy=True)
total_loss.append(loss[0])
if (idx + 1) % 500 == 0:
avg_loss = np.mean(total_loss)
logging.info("epoch %d | step %d | lr %.4f | train_loss %f " %
(epoch, idx + 1, lr, avg_loss))
total_loss = []
return avg_loss
def save_model(program, exe, dataset, model, feed_dict, filename):
"""Save model.
"""
final_model = produce_model(exe, program, dataset, model, feed_dict)
logging.info('saving model in %s' % (filename))
pkl.dump(final_model, open(filename, 'wb'))
def test(program, exe, dataset, model, feed_dict):
"""Testing and validating.
"""
final_model = produce_model(exe, program, dataset, model, feed_dict)
valid_result = evaluate(final_model, dataset.edge_types,
dataset.valid_data)
test_result = evaluate(final_model, dataset.edge_types, dataset.test_data)
logging.info("valid_AUC %.4f | valid_PR %.4f | valid_F1 %.4f" %
(valid_result['AUC'], valid_result['PR'], valid_result['F1']))
logging.info("test_AUC %.4f | test_PR %.4f | test_F1 %.4f" %
(test_result['AUC'], test_result['PR'], test_result['F1']))
return test_result
def main(config):
"""main function for training GATNE model.
"""
logging.info(config)
set_seed(config['seed'])
dataset = getattr(
Dataset, config['data_loader']['type'])(config['data_loader']['args'])
edge_types = dataset.graph.edge_types_info()
logging.info(['total edge types: ', edge_types])
# train_pairs is a list of tuple: [(src1, dst1, neg, e1), (src2, dst2, neg, e2)]
# e(int), edge num count, for select which edge embedding
train_pairs_file = config['data_loader']['args']['data_path'] + \
config['data_loader']['args']['train_pairs_file']
if os.path.exists(train_pairs_file):
logging.info('loading train pairs from pkl file %s' % train_pairs_file)
train_pairs = pkl.load(open(train_pairs_file, 'rb'))
else:
logging.info('generating walks')
all_walks = dataset.generate_walks()
logging.info('generating train pairs')
train_pairs = dataset.generate_pairs(all_walks)
logging.info('dumping train pairs to %s' % (train_pairs_file))
pkl.dump(train_pairs, open(train_pairs_file, 'wb'))
logging.info('total train pairs: %d' % (len(train_pairs)))
data = dataset.fetch_batch(train_pairs,
config['data_loader']['args']['batch_size'])
place = fluid.CUDAPlace(0) if config['use_cuda'] else fluid.CPUPlace()
train_program = fluid.Program()
startup_program = fluid.Program()
test_program = fluid.Program()
with fluid.program_guard(train_program, startup_program):
model = getattr(Model, config['model']['type'])(
config['model']['args'], dataset, place)
test_program = train_program.clone(for_test=True)
with fluid.program_guard(train_program, startup_program):
global_steps = len(data) * config['trainer']['args']['epochs']
model.backward(global_steps, config['optimizer']['args'])
# train
exe = fluid.Executor(place)
exe.run(startup_program)
feed_dict = model.gw.to_feed(dataset.graph)
logging.info('test before training...')
test(test_program, exe, dataset, model, feed_dict)
logging.info('training...')
for epoch in range(1, 1 + config['trainer']['args']['epochs']):
train_result = run_epoch(epoch, config['trainer']['args'], dataset,
data, train_program, test_program, model,
feed_dict, exe)
logging.info('validating and testing...')
test_result = test(test_program, exe, dataset, model, feed_dict)
filename = os.path.join(config['trainer']['args']['save_dir'],
'dict_embed_model_epoch_%d.pkl' % (epoch))
save_model(test_program, exe, dataset, model, feed_dict, filename)
logging.info(
"final_test_AUC %.4f | final_test_PR %.4f | fianl_test_F1 %.4f" % (
test_result['AUC'], test_result['PR'], test_result['F1']))
logging.info('training finished')
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='GATNE')
parser.add_argument(
'-c',
'--config',
default=None,
type=str,
help='config file path (default: None)')
parser.add_argument(
'-n',
'--taskname',
default=None,
type=str,
help='task name(default: None)')
args = parser.parse_args()
if args.config:
# load config file
config = Config(args.config, isCreate=True, isSave=True)
config = config()
else:
raise AssertionError(
"Configuration file need to be specified. Add '-c config.yaml', for example."
)
log_format = '%(asctime)s-%(levelname)s-%(name)s: %(message)s'
logging.basicConfig(
level=getattr(logging, config['log_level'].upper()), format=log_format)
main(config)