forked from PaddlePaddle/PGL
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
244 lines (198 loc) · 8.9 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This file implement the GATNE model.
"""
import numpy as np
import math
import logging
import paddle.fluid as fluid
import paddle.fluid.layers as fl
from pgl import heter_graph_wrapper
class GATNE(object):
"""Implementation of GATNE model.
Args:
config: dict, some configure parameters.
dataset: instance of Dataset class
place: GPU or CPU place
"""
def __init__(self, config, dataset, place):
logging.info(['model is: ', self.__class__.__name__])
self.config = config
self.graph = dataset.graph
self.placce = place
self.edge_types = sorted(self.graph.edge_types_info())
logging.info('edge_types in model: %s' % str(self.edge_types))
neg_num = dataset.config['neg_num']
# hyper parameters
self.num_nodes = self.graph.num_nodes
self.embedding_size = self.config['dimensions']
self.embedding_u_size = self.config['edge_dim']
self.dim_a = self.config['att_dim']
self.att_head = self.config['att_head']
self.edge_type_count = len(self.edge_types)
self.u_num = self.edge_type_count
self.gw = heter_graph_wrapper.HeterGraphWrapper(
name="heter_graph",
edge_types=self.graph.edge_types_info(),
node_feat=self.graph.node_feat_info(),
edge_feat=self.graph.edge_feat_info())
self.train_inputs = fl.data(
'train_inputs', shape=[None], dtype='int64')
self.train_labels = fl.data(
'train_labels', shape=[None, 1, 1], dtype='int64')
self.train_types = fl.data(
'train_types', shape=[None, 1], dtype='int64')
self.train_negs = fl.data(
'train_negs', shape=[None, neg_num, 1], dtype='int64')
self.forward()
def forward(self):
"""Build the GATNE net.
"""
param_attr_init = fluid.initializer.Uniform(
low=-1.0, high=1.0, seed=np.random.randint(100))
embed_param_attrs = fluid.ParamAttr(
name='Base_node_embed', initializer=param_attr_init)
# node_embeddings
base_node_embed = fl.embedding(
input=fl.reshape(
self.train_inputs, shape=[-1, 1]),
size=[self.num_nodes, self.embedding_size],
param_attr=embed_param_attrs)
node_features = []
for edge_type in self.edge_types:
param_attr_init = fluid.initializer.Uniform(
low=-1.0, high=1.0, seed=np.random.randint(100))
embed_param_attrs = fluid.ParamAttr(
name='%s_node_embed' % edge_type, initializer=param_attr_init)
features = fl.embedding(
input=self.gw[edge_type].node_feat['index'],
size=[self.num_nodes, self.embedding_u_size],
param_attr=embed_param_attrs)
node_features.append(features)
# mp_output: list of embedding(self.num_nodes, dim)
mp_output = self.message_passing(self.gw, self.edge_types,
node_features)
# U : (num_type[m], num_nodes, dim[s])
node_type_embed = fl.stack(mp_output, axis=0)
# U : (num_nodes, num_type[m], dim[s])
node_type_embed = fl.transpose(node_type_embed, perm=[1, 0, 2])
#gather node_type_embed from train_inputs
node_type_embed = fl.gather(node_type_embed, self.train_inputs)
# M_r
tn_initializer = fluid.initializer.TruncatedNormalInitializer(
loc=0.0, scale=1.0 / math.sqrt(self.embedding_size))
trans_weights = fl.create_parameter(
shape=[
self.edge_type_count, self.embedding_u_size,
self.embedding_size // self.att_head
],
default_initializer=tn_initializer,
dtype='float32',
name='trans_w')
# W_r
trans_weights_s1 = fl.create_parameter(
shape=[self.edge_type_count, self.embedding_u_size, self.dim_a],
default_initializer=tn_initializer,
dtype='float32',
name='trans_w_s1')
# w_r
trans_weights_s2 = fl.create_parameter(
shape=[self.edge_type_count, self.dim_a, self.att_head],
default_initializer=tn_initializer,
dtype='float32',
name='trans_w_s2')
trans_w = fl.gather(trans_weights, self.train_types)
trans_w_s1 = fl.gather(trans_weights_s1, self.train_types)
trans_w_s2 = fl.gather(trans_weights_s2, self.train_types)
attention = self.attention(node_type_embed, trans_w_s1, trans_w_s2)
node_type_embed = fl.matmul(attention, node_type_embed)
node_embed = base_node_embed + fl.reshape(
fl.matmul(node_type_embed, trans_w), [-1, self.embedding_size])
self.last_node_embed = fl.l2_normalize(node_embed, axis=1)
nce_weight_initializer = fluid.initializer.TruncatedNormalInitializer(
loc=0.0, scale=1.0 / math.sqrt(self.embedding_size))
nce_weight_attrs = fluid.ParamAttr(
name='nce_weight', initializer=nce_weight_initializer)
weight_pos = fl.embedding(
input=self.train_labels,
size=[self.num_nodes, self.embedding_size],
param_attr=nce_weight_attrs)
weight_neg = fl.embedding(
input=self.train_negs,
size=[self.num_nodes, self.embedding_size],
param_attr=nce_weight_attrs)
tmp_node_embed = fl.unsqueeze(self.last_node_embed, axes=[1])
pos_logits = fl.matmul(
tmp_node_embed, weight_pos, transpose_y=True) # [B, 1, 1]
neg_logits = fl.matmul(
tmp_node_embed, weight_neg, transpose_y=True) # [B, 1, neg_num]
pos_score = fl.squeeze(pos_logits, axes=[1])
pos_score = fl.clip(pos_score, min=-10, max=10)
pos_score = -1.0 * fl.logsigmoid(pos_score)
neg_score = fl.squeeze(neg_logits, axes=[1])
neg_score = fl.clip(neg_score, min=-10, max=10)
neg_score = -1.0 * fl.logsigmoid(-1.0 * neg_score)
neg_score = fl.reduce_sum(neg_score, dim=1, keep_dim=True)
self.loss = fl.reduce_mean(pos_score + neg_score)
def attention(self, node_type_embed, trans_w_s1, trans_w_s2):
"""Calculate attention weights.
"""
attention = fl.tanh(fl.matmul(node_type_embed, trans_w_s1))
attention = fl.matmul(attention, trans_w_s2)
attention = fl.reshape(attention, [-1, self.u_num])
attention = fl.softmax(attention)
attention = fl.reshape(attention, [-1, self.att_head, self.u_num])
return attention
def message_passing(self, gw, edge_types, features, name=''):
"""Message passing from source nodes to dstination nodes
"""
def __message(src_feat, dst_feat, edge_feat):
"""send function
"""
return src_feat['h']
def __reduce(feat):
"""recv function
"""
return fluid.layers.sequence_pool(feat, pool_type='average')
if not isinstance(edge_types, list):
edge_types = [edge_types]
if not isinstance(features, list):
features = [features]
assert len(edge_types) == len(features)
output = []
for i in range(len(edge_types)):
msg = gw[edge_types[i]].send(
__message, nfeat_list=[('h', features[i])])
neigh_feat = gw[edge_types[i]].recv(msg, __reduce)
neigh_feat = fl.fc(neigh_feat,
size=neigh_feat.shape[-1],
name='neigh_fc_%d' % (i),
act='sigmoid')
slf_feat = fl.fc(features[i],
size=neigh_feat.shape[-1],
name='slf_fc_%d' % (i),
act='sigmoid')
out = fluid.layers.concat([slf_feat, neigh_feat], axis=1)
out = fl.fc(out, size=neigh_feat.shape[-1], name='fc', act=None)
out = fluid.layers.l2_normalize(out, axis=1)
output.append(out)
# list of matrix
return output
def backward(self, global_steps, opt_config):
"""Build the optimizer.
"""
self.lr = fl.polynomial_decay(opt_config['lr'], global_steps, 0.001)
adam = fluid.optimizer.Adam(learning_rate=self.lr)
adam.minimize(self.loss)