-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrrtstar.py
326 lines (264 loc) · 11.4 KB
/
rrtstar.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
import json
import numpy as np
import time
def binary_search(value, lst):
low = 0
high = len(lst)
while low != high:
mid = int((low + high) / 2)
if lst[mid] <= value:
low = mid + 1
else:
high = mid
return low
def k_nearest_neighbor(x, tree, k):
if len(tree) == 1:
return [0]
difference = tree[:, 2:4] - x
dist = np.linalg.norm(difference, axis=1)
if k == 1: # easy case optimization
return [np.argmin(dist)]
idx = np.argpartition(dist, k) if k < len(tree) else np.arange(k)
# idx = idx[:k].tolist()
# idx.sort(key=lambda e: dist[e])
# return np.array(idx)
return idx
def steer(x1, x2, scale):
return x1 + scale * (x2 - x1)
def distance(x1, x2):
return np.linalg.norm(x1 - x2)
def create_solution_path(tree, goal_index):
path = [tree[goal_index, 2:4].tolist()]
parent = int(tree[goal_index, 1])
while parent > 0:
path.append(tree[parent, 2:4].tolist())
parent = int(tree[parent, 1])
path.append(tree[0, 2:4].tolist())
path.reverse()
return path
class RRTStar:
def __init__(self):
self.goal_bias = 10 # every nth iteration the goal is sampled
self.space_size = 512.0
self.start = None # set by the json configuration [x, y]
self.goal = None # set by the json configuration [x, y]
self.obstacles = None # set by the json configuration [x, y, distance threshold]
self.rng = np.random.default_rng()
self.range = 32.0 # max distance between two points
self.interpolation_steps = 4 # granularity of collision check
self.k_rrg = 1.5 * np.e # see RRT* paper
self.range_threshold_factor = 1.001
self.run_time_seconds = 0.5 # how long a single rrt run will take
self.prob_map = None # call set_probability_map() method
self.cumulative_prob_x = None # call set_probability_map() method
def set_probability_map_from_dict(self, prob_dct):
s = int(self.space_size)
prob_map = np.zeros((s, s))
for key, val in prob_dct.items():
for tup in val:
prob_map[tup] = key
prob_map /= prob_map.sum()
self.set_probability_map(prob_map)
def set_probability_map(self, prob_map):
self.prob_map = prob_map
marginal_prob_x = np.sum(prob_map, axis=0)
self.cumulative_prob_x = np.zeros(len(marginal_prob_x))
self.cumulative_prob_x[0] = marginal_prob_x[0]
for i in range(1, len(marginal_prob_x)):
self.cumulative_prob_x[i] = self.cumulative_prob_x[i - 1] + marginal_prob_x[i]
def load_environment(self, index):
with open(f"data/json/p{index:05d}.json", "r") as infile:
dct = json.load(infile)
self.start = np.array(dct['start'][0])
self.goal = np.array(dct['goal'][0])
agent_radius = dct['start'][1]
obs = dct['obstacles']
ob = obs[0]
x = np.array([ob[0][0], ob[0][1], ob[1] + agent_radius])
self.obstacles = x[None, :]
for ob in obs[1:]:
x = np.array([ob[0][0], ob[0][1], ob[1] + agent_radius])
self.obstacles = np.vstack((self.obstacles, x))
# point collision check
def is_collision_free(self, point):
difference = self.obstacles[:, :2] - point
dist = np.linalg.norm(difference, axis=1)
margin = dist - self.obstacles[:, 2]
return np.all(margin > 0)
def get_cumulative_probability(self, index):
p_y = self.prob_map[:, index]
conditional_probability_y = p_y / np.sum(p_y)
cumulative_prob_y = np.zeros(len(conditional_probability_y))
cumulative_prob_y[0] = conditional_probability_y[0]
for i in range(1, len(conditional_probability_y)):
cumulative_prob_y[i] = cumulative_prob_y[i - 1] + conditional_probability_y[i]
return cumulative_prob_y
# legacy function
def sample_random(self):
while True:
p = self.rng.uniform(0, self.space_size, 2)
if self.is_collision_free(p):
return p
# sample according to the given probability map
def sample_with_probability_map(self):
while True:
# sample x
val = self.rng.random()
index = binary_search(val, self.cumulative_prob_x)
left_bound = self.space_size / len(self.cumulative_prob_x) * index
right_bound = self.space_size / len(self.cumulative_prob_x) * (index + 1)
x = self.rng.uniform(left_bound, right_bound)
# construct conditional probability for y
cumulative_prob_y = self.get_cumulative_probability(index)
# sample y
val = self.rng.random()
index = binary_search(val, cumulative_prob_y)
index = -1 * (index - len(cumulative_prob_y) + 1) # y coordinates start at the bottom
left_bound = self.space_size / len(self.cumulative_prob_x) * index
right_bound = self.space_size / len(self.cumulative_prob_x) * (index + 1)
y = self.rng.uniform(left_bound, right_bound)
p = np.array([x, y])
if self.is_collision_free(p):
return p
def new_state(self, x_rand, x_near):
dist = distance(x_rand, x_near)
if dist <= self.range:
return x_rand
scale = self.range / dist
x_new = steer(x_near, x_rand, scale)
return x_new
# line collision check
def path_is_free(self, x1, x2, n_steps):
if n_steps == 0:
return True
if np.allclose(x1, x2):
return True
mid = steer(x1, x2, 0.5)
if self.is_collision_free(mid):
return self.path_is_free(x1, mid, n_steps - 1) and self.path_is_free(mid, x2, n_steps - 1)
return False
def connect(self, tree, p_new, nearest_index, k_nearest_idx):
index_min = nearest_index
cost_min = tree[nearest_index, 4] + distance(tree[index_min, 2:4], p_new)
for i in k_nearest_idx:
dist = distance(tree[i, 2:4], p_new)
if dist > self.range_threshold_factor * self.range:
continue
cost = tree[i, 4] + dist
if cost < cost_min and self.path_is_free(tree[i, 2:4], p_new, self.interpolation_steps):
cost_min = cost
index_min = i
x_new = np.array([len(tree), index_min, p_new[0], p_new[1], cost_min])
return x_new
# goal is resampled
def connect_goal(self, tree, x_goal, k_nearest_idx):
cost_min = x_goal[4]
index_min = x_goal[0]
for i in k_nearest_idx:
if np.allclose(x_goal, tree[i]):
continue
dist = distance(tree[i, 2:4], x_goal[2:4])
if dist > self.range_threshold_factor * self.range:
continue
cost = tree[i, 4] + dist
if cost < cost_min and self.path_is_free(tree[i, 2:4], x_goal[2:4], self.interpolation_steps):
cost_min = cost
index_min = i
if cost_min < x_goal[4]:
goal_index = int(x_goal[0])
tree[goal_index, 1] = index_min
tree[goal_index, 4] = cost_min
return tree
def rewire(self, tree, x_new, k_nearest_idx):
for i in k_nearest_idx:
dist = distance(x_new[2:4], tree[i, 2:4])
if dist > self.range_threshold_factor * self.range:
continue
cost = x_new[4] + dist
if cost < tree[i, 4] and self.path_is_free(x_new[2:4], tree[i, 2:4], self.interpolation_steps):
tree[i, 1] = x_new[0] # change parent index
tree[i, 4] = cost # change cost
return tree
def run_single_iteration(self, tree, iteration, goal_index):
solution_cost = float('inf')
if iteration % self.goal_bias == 0:
p_rand = self.goal
else:
#p_rand = self.sample_random()
p_rand = self.sample_with_probability_map()
nearest_index = k_nearest_neighbor(p_rand, tree, 1)[0]
p_near = tree[nearest_index, 2:4]
p_new = self.new_state(p_rand, p_near)
is_goal = np.allclose(self.goal, p_new)
is_free = self.path_is_free(p_near, p_new, self.interpolation_steps)
if is_free:
k = min(len(tree), np.ceil(self.k_rrg * np.log(len(tree))).astype(int))
k_nearest_idx = k_nearest_neighbor(p_new, tree, k)
if is_goal and goal_index >= 0:
tree = self.connect_goal(tree, tree[goal_index], k_nearest_idx)
x_new = tree[goal_index]
else:
x_new = self.connect(tree, p_new, nearest_index, k_nearest_idx)
tree = np.vstack((tree, x_new))
if is_goal:
solution_cost = x_new[4]
else:
tree = self.rewire(tree, x_new, k_nearest_idx)
return tree, solution_cost
# return the path length of the best solution, the iteration where the first solution was found,
# if a solution was found
# return float('inf), -1 otherwise
def run(self):
start_time = time.time()
# tree: self index, parent index, x, y, cost
start_entry = np.array([0.0, 0.0, self.start[0], self.start[1], 0.0])
tree = start_entry[None, :]
goal_index = -1
iteration = 0
solution_cost = float('inf')
first_solution_at_iteration = -1
while time.time() - start_time < self.run_time_seconds:
tree, it_solution_cost = self.run_single_iteration(tree, iteration, goal_index)
solution_cost = min(solution_cost, it_solution_cost)
if it_solution_cost < float('inf') and goal_index < 0:
goal_index = len(tree) - 1
first_solution_at_iteration = iteration
iteration += 1
# print(f"Solution Cost: {solution_cost}")
# print(f"Total Iterations: {iteration}")
# print(f"First Solution: {first_solution_at_iteration}")
#
# path = create_solution_path(tree, goal_index)
# print(path)
return solution_cost, first_solution_at_iteration
def main():
# example probability maps
prob_map1 = np.full((512, 512), 1 / (512 ** 2))
prob_map2 = np.random.default_rng().random(size=(512, 512))
prob_map2 /= np.sum(prob_map2)
prob_dct = {
23 : [(1, 1), (2, 1)],
99 : [(0, 2), (3, 1)]
}
rrt = RRTStar()
rrt.run_time_seconds = 0.2 # configure the time for each run
rrt.load_environment(1) # load environment by index
# Run with probability dictionary
rrt.set_probability_map_from_dict(prob_dct)
solution_cost, first_solution_at_iteration = rrt.run() # run and get reward
print(f"Solution Cost: {solution_cost}")
print(f"First Solution: {first_solution_at_iteration}")
# Run with probability map
print("\nProbability Map 1")
rrt.set_probability_map(prob_map1) # set probability map
solution_cost, first_solution_at_iteration = rrt.run() # run and get reward
print(f"Solution Cost: {solution_cost}")
print(f"First Solution: {first_solution_at_iteration}")
# Run with different probability map
print("\nProbability Map 2")
rrt.set_probability_map(prob_map2) # set probability map
solution_cost, first_solution_at_iteration = rrt.run() # run and get reward
print(f"Solution Cost: {solution_cost}")
print(f"First Solution: {first_solution_at_iteration}")
if __name__ == '__main__':
main() # example for correct usage