diff --git a/ivy/functional/ivy/data_type.py b/ivy/functional/ivy/data_type.py index 4b074b58a3795..1d82c3151f106 100644 --- a/ivy/functional/ivy/data_type.py +++ b/ivy/functional/ivy/data_type.py @@ -1666,27 +1666,20 @@ def dtype( Examples -------- - With :class:`ivy.Array` inputs: - - >>> x1 = ivy.array([1.0, 2.0, 3.5, 4.5, 5, 6]) - >>> y = ivy.dtype(x1) - >>> print(y) - float32 - - With :class:`ivy.NativeArray` inputs: - - >>> x1 = ivy.native_array([1, 0, 1, -1, 0]) - >>> y = ivy.dtype(x1) - >>> print(y) - int32 - - With :class:`ivy.Container` inputs: - - >>> x = ivy.Container(a=ivy.native_array([1.0, 2.0, -1.0, 4.0, 1.0]), - ... b=ivy.native_array([1, 0, 0, 0, 1])) - >>> y = ivy.dtype(x.a) - >>> print(y) - float32 + With :class:`ivy.Array` input: + >>> x = ivy.array([1, 2, 3], dtype="int32") + >>> ivy.dtype(x) + 'int32' + With :class:`ivy.NativeArray` input: + >>> x = ivy.native_array([1, 2, 3], dtype="int32") + >>> ivy.dtype(x) + 'int32' + With :class:`ivy.Container` input: + >>> c = ivy.Container(x=ivy.array([1, 2, 3], dtype="int32")) + >>> ivy.dtype(c) + { + x: 'int32' + } """ return current_backend(x).dtype(x, as_native=as_native) diff --git a/ivy/functional/ivy/set.py b/ivy/functional/ivy/set.py index 5f9e92f400918..bea4f31e35b54 100644 --- a/ivy/functional/ivy/set.py +++ b/ivy/functional/ivy/set.py @@ -117,33 +117,32 @@ def unique_all( Examples -------- - With :class:`ivy.Array` input: + With Class:`ivy.Array` input: + >>> x = ivy.array([1,2,1,3,4,1,3]) + >>> y = ivy.unique_all(x) + >>> print(y) + Results(values=ivy.array([1, 2, 3, 4]), + indices=ivy.array([0, 1, 3, 4]), + inverse_indices=ivy.array([0, 1, 0, 2, 3, 0, 2]), + counts=ivy.array([3, 1, 2, 1])) + >>> x = ivy.array([0.2,0.3,0.4,0.2,1.4,2.3,0.2]) + >>> y = ivy.unique_all(x) + >>> print(y) + Results(values=ivy.array([0.2 , 0.30000001, 0.40000001, 1.39999998, + 2.29999995]), + indices=ivy.array([0, 1, 2, 4, 5]), + inverse_indices=ivy.array([0, 1, 2, 0, 3, 4, 0]), + counts=ivy.array([3, 1, 1, 1, 1])) - >>> x = ivy.randint(0, 10, shape=(2, 2), seed=0) - >>> z = ivy.unique_all(x) - >>> print(z) - Results(values=ivy.array([1, 2, 5, 9]), - indices=ivy.array([3, 2, 1, 0]), - inverse_indices=ivy.array([[3, 2], [1, 0]]), - counts=ivy.array([1, 1, 1, 1])) - - >>> x = ivy.array([[ 2.1141, 0.8101, 0.9298, 0.8460], - ... [-1.2119, -0.3519, -0.6252, 0.4033], - ... [ 0.7443, 0.2577, -0.3707, -0.0545], - ... [-0.3238, 0.5944, 0.0775, -0.4327]]) - >>> x[range(4), range(4)] = ivy.nan #Introduce NaN values - >>> z = ivy.unique_all(x) - >>> print(z) - Results(values=ivy.array([-1.2119 , -0.62519997, -0.3238 , -0.0545 , - 0.0775 , 0.2577 , 0.40329999, 0.59439999, 0.74430001, 0.81010002, - 0.84600002, 0.92979997, nan, nan, nan, nan]), - indices=ivy.array([ 4, 6, 12, 11, 14, 9, 7, 13, 8, 1, 3, 2, 0, 5, - 10, 15]), - inverse_indices=ivy.array([[12, 9, 11, 10], - [ 0, 12, 1, 6], - [ 8, 5, 12, 3], - [ 2, 7, 4, 12]]), - counts=ivy.array([1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1])) + With :class:`ivy.Container` input: + >>> x = ivy.Container(a=ivy.array([0., 1., 3. , 2. , 1. , 0.]), + ... b=ivy.array([1, 2, 1, 3, 4, 1, 3])) + >>> y = ivy.unique_all(x) + >>> print(y) + { + a: (list[2],shape=[4]), + b: (list[2],shape=[4]) + } """ return ivy.current_backend(x).unique_all(x, axis=axis, by_value=by_value)