-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsetup.py
43 lines (39 loc) · 1.38 KB
/
setup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
import pathlib
from setuptools import find_packages, setup
here = pathlib.Path(__file__).parent.resolve()
long_description = (here / "README.md").read_text(encoding="utf-8")
setup(
name="privpgd",
version="0.0.1",
description="Python implementation of the methods introduced in the paper: Privacy-preserving data release leveraging optimal transport and particle gradient descent",
long_description=long_description,
long_description_content_type="text/markdown",
url="https://github.com/jaabmar/private-pgd",
author="Javier Abad & Konstantin Donhauser",
author_email="[email protected]",
classifiers=[
"License :: OSI Approved :: MIT License",
"Programming Language :: Python :: 3",
"Operating System :: OS Independent",
],
keywords="machine learning, privacy, differential privacy, optimal transport, particle gradient descent",
package_dir={"": "src"},
packages=find_packages(where="src"),
install_requires=[
"numpy==1.26.2",
"scipy==1.11.4",
"pandas==2.1.4",
"scikit-learn==1.2.2",
"torch==2.1.2",
"cvxpy==1.4.1",
"disjoint-set==0.7.4",
"networkx==3.1",
"autodp==0.2.3.1",
"openml==0.14.1",
"POT==0.9.1",
"folktables==0.0.12",
"seaborn==0.13.0",
"click==8.1.7",
],
python_requires="==3.11.5",
)