-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathAsociatividad_del_minimo.lean
156 lines (129 loc) · 4.54 KB
/
Asociatividad_del_minimo.lean
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
-- Asociatividad_del_minimo.lean
-- En ℝ, min(min(a,b),c) = min(a,min(b,c)).
-- José A. Alonso Jiménez <https://jaalonso.github.io>
-- Sevilla, 7-septiembre-2023
-- ---------------------------------------------------------------------
-- ---------------------------------------------------------------------
-- Sean a, b y c números reales. Demostrar que
-- min (min a b) c = min a (min b c)
-- ----------------------------------------------------------------------
-- Demostración en lenguaje natural
-- ================================
-- Por la propiedad antisimétrica, la igualdad es consecuencia de las
-- siguientes desigualdades
-- min(min(a, b), c) ≤ min(a, min(b, c)) (1)
-- min(a, min(b, c)) ≤ min(min(a, b), c) (2)
--
-- La (1) es consecuencia de las siguientes desigualdades
-- min(min(a, b), c) ≤ a (1a)
-- min(min(a, b), c) ≤ b (1b)
-- min(min(a, b), c) ≤ c (1c)
-- En efecto, de (1b) y (1c) se obtiene
-- min(min(a, b), c) ≤ min(b,c)
-- que, junto con (1a) da (1).
--
-- La (2) es consecuencia de las siguientes desigualdades
-- min(a, min(b, c)) ≤ a (2a)
-- min(a, min(b, c)) ≤ b (2b)
-- min(a, min(b, c)) ≤ c (2c)
-- En efecto, de (2a) y (2b) se obtiene
-- min(a, min(b, c)) ≤ min(a, b)
-- que, junto con (2c) da (2).
--
-- La demostración de (1a) es
-- min(min(a, b), c) ≤ min(a, b) ≤ a
-- La demostración de (1b) es
-- min(min(a, b), c) ≤ min(a, b) ≤ b
-- La demostración de (2b) es
-- min(a, min(b, c)) ≤ min(b, c) ≤ b
-- La demostración de (2c) es
-- min(a, min(b, c)) ≤ min(b, c) ≤ c
-- La (1c) y (2a) son inmediatas.
-- Demostraciones con Lean4
-- ========================
import Mathlib.Data.Real.Basic
variable {a b c : ℝ}
-- Lemas auxiliares
-- ================
lemma aux1a : min (min a b) c ≤ a :=
calc min (min a b) c
≤ min a b := by exact min_le_left (min a b) c
_ ≤ a := min_le_left a b
lemma aux1b : min (min a b) c ≤ b :=
calc min (min a b) c
≤ min a b := by exact min_le_left (min a b) c
_ ≤ b := min_le_right a b
lemma aux1c : min (min a b) c ≤ c :=
by exact min_le_right (min a b) c
-- 1ª demostración del lema aux1
lemma aux1 : min (min a b) c ≤ min a (min b c) :=
by
apply le_min
{ show min (min a b) c ≤ a
exact aux1a }
{ show min (min a b) c ≤ min b c
apply le_min
{ show min (min a b) c ≤ b
exact aux1b }
{ show min (min a b) c ≤ c
exact aux1c }}
-- 2ª demostración del lema aux1
lemma aux1' : min (min a b) c ≤ min a (min b c) :=
le_min aux1a (le_min aux1b aux1c)
lemma aux2a : min a (min b c) ≤ a :=
by exact min_le_left a (min b c)
lemma aux2b : min a (min b c) ≤ b :=
calc min a (min b c)
≤ min b c := by exact min_le_right a (min b c)
_ ≤ b := min_le_left b c
lemma aux2c : min a (min b c) ≤ c :=
calc min a (min b c)
≤ min b c := by exact min_le_right a (min b c)
_ ≤ c := min_le_right b c
-- 1ª demostración del lema aux2
lemma aux2 : min a (min b c) ≤ min (min a b) c :=
by
apply le_min
{ show min a (min b c) ≤ min a b
apply le_min
{ show min a (min b c) ≤ a
exact aux2a }
{ show min a (min b c) ≤ b
exact aux2b }}
{ show min a (min b c) ≤ c
exact aux2c }
-- 2ª demostración del lema aux2
lemma aux2' : min a (min b c) ≤ min (min a b) c :=
le_min (le_min aux2a aux2b) aux2c
-- 1ª demostración
-- ===============
example :
min (min a b) c = min a (min b c) :=
by
apply le_antisymm
{ show min (min a b) c ≤ min a (min b c)
exact aux1 }
{ show min a (min b c) ≤ min (min a b) c
exact aux2 }
-- 2ª demostración
-- ===============
example : min (min a b) c = min a (min b c) :=
by
apply le_antisymm
{ exact aux1 }
{ exact aux2 }
-- 3ª demostración
-- ===============
example : min (min a b) c = min a (min b c) :=
le_antisymm aux1 aux2
-- 4ª demostración
-- ===============
example : min (min a b) c = min a (min b c) :=
min_assoc a b c
-- Lemas usados
-- ============
-- #check (le_antisymm : a ≤ b → b ≤ a → a = b)
-- #check (le_min : c ≤ a → c ≤ b → c ≤ min a b)
-- #check (min_assoc a b c : min (min a b) c = min a (min b c))
-- #check (min_le_left a b : min a b ≤ a)
-- #check (min_le_right a b : min a b ≤ b)