-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDesigualdad_con_rcases.lean
167 lines (147 loc) · 4.6 KB
/
Desigualdad_con_rcases.lean
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
-- Desigualdad_con_rcases.lean
-- Si (∃ x, y ∈ ℝ)[z = x² + y² ∨ z = x² + y² + 1], entonces z ≥ 0.
-- José A. Alonso Jiménez <https://jaalonso.github.io>
-- Sevilla, 18-enero-2024
-- ---------------------------------------------------------------------
-- ---------------------------------------------------------------------
-- Demostrar que si
-- ∃ x y, z = x^2 + y^2 ∨ z = x^2 + y^2 + 1
-- entonces
-- z ≥ 0
-- ----------------------------------------------------------------------
-- Demostración en lenguaje natural
-- ================================
-- Usaremos los siguientes lemas
-- (∀ x ∈ ℝ)[x² ≥ 0] (L1)
-- (∀ x, y ∈ ℝ)[x ≥ 0 → y ≥ 0 → x + y ≥ 0] (L2)
-- 1 ≥ 0 (L3)
-- Sean a y b tales que
-- z = a² + b² ∨ z = a² + b² + 1
-- Entonces, por L1, se tiene que
-- a² ≥ 0 (1)
-- b² ≥ 0 (2)
--
-- En el primer caso, z = a² + b² y se tiene que z ≥ 0 por el lema L2
-- aplicado a (1) y (2).
--
-- En el segundo caso, z = a² + b² y se tiene que z ≥ 0 por el lema L2
-- aplicado a (1), (2) y L3.
-- Demostraciones con Lean4
-- ========================
import Mathlib.Data.Real.Basic
import Mathlib.Tactic
variable {z : ℝ}
-- 1ª demostración
-- ===============
example
(h : ∃ x y, z = x^2 + y^2 ∨ z = x^2 + y^2 + 1)
: z ≥ 0 :=
by
rcases h with ⟨a, b, h1⟩
-- a b : ℝ
-- h1 : z = a ^ 2 + b ^ 2 ∨ z = a ^ 2 + b ^ 2 + 1
have h2 : a ^ 2 ≥ 0 := pow_two_nonneg a
have h3 : b ^ 2 ≥ 0 := pow_two_nonneg b
have h4 : a ^ 2 + b ^ 2 ≥ 0 := add_nonneg h2 h3
rcases h1 with h5 | h6
. -- h5 : z = a ^ 2 + b ^ 2
show z ≥ 0
calc z = a ^ 2 + b ^ 2 := h5
_ ≥ 0 := add_nonneg h2 h3
. -- h6 : z = a ^ 2 + b ^ 2 + 1
show z ≥ 0
calc z = (a ^ 2 + b ^ 2) + 1 := h6
_ ≥ 0 := add_nonneg h4 zero_le_one
-- 2ª demostración
-- ===============
example
(h : ∃ x y, z = x^2 + y^2 ∨ z = x^2 + y^2 + 1)
: z ≥ 0 :=
by
rcases h with ⟨a, b, h1 | h2⟩
. -- h1 : z = a ^ 2 + b ^ 2
have h1a : a ^ 2 ≥ 0 := pow_two_nonneg a
have h1b : b ^ 2 ≥ 0 := pow_two_nonneg b
show z ≥ 0
calc z = a ^ 2 + b ^ 2 := h1
_ ≥ 0 := add_nonneg h1a h1b
. -- h2 : z = a ^ 2 + b ^ 2 + 1
have h2a : a ^ 2 ≥ 0 := pow_two_nonneg a
have h2b : b ^ 2 ≥ 0 := pow_two_nonneg b
have h2c : a ^ 2 + b ^ 2 ≥ 0 := add_nonneg h2a h2b
show z ≥ 0
calc z = (a ^ 2 + b ^ 2) + 1 := h2
_ ≥ 0 := add_nonneg h2c zero_le_one
-- 3ª demostración
-- ===============
example
(h : ∃ x y, z = x^2 + y^2 ∨ z = x^2 + y^2 + 1)
: z ≥ 0 :=
by
rcases h with ⟨a, b, h1 | h2⟩
. -- h1 : z = a ^ 2 + b ^ 2
rw [h1]
-- ⊢ a ^ 2 + b ^ 2 ≥ 0
apply add_nonneg
. -- ⊢ 0 ≤ a ^ 2
apply pow_two_nonneg
. -- ⊢ 0 ≤ b ^ 2
apply pow_two_nonneg
. -- h2 : z = a ^ 2 + b ^ 2 + 1
rw [h2]
-- ⊢ a ^ 2 + b ^ 2 + 1 ≥ 0
apply add_nonneg
. -- ⊢ 0 ≤ a ^ 2 + b ^ 2
apply add_nonneg
. -- ⊢ 0 ≤ a ^ 2
apply pow_two_nonneg
. -- ⊢ 0 ≤ b ^ 2
apply pow_two_nonneg
. -- ⊢ 0 ≤ 1
exact zero_le_one
-- 4ª demostración
-- ===============
example
(h : ∃ x y, z = x^2 + y^2 ∨ z = x^2 + y^2 + 1)
: z ≥ 0 :=
by
rcases h with ⟨a, b, rfl | rfl⟩
. -- ⊢ a ^ 2 + b ^ 2 ≥ 0
apply add_nonneg
. -- ⊢ 0 ≤ a ^ 2
apply pow_two_nonneg
. -- ⊢ 0 ≤ b ^ 2
apply pow_two_nonneg
. -- ⊢ a ^ 2 + b ^ 2 + 1 ≥ 0
apply add_nonneg
. -- ⊢ 0 ≤ a ^ 2 + b ^ 2
apply add_nonneg
. -- ⊢ 0 ≤ a ^ 2
apply pow_two_nonneg
. -- ⊢ 0 ≤ b ^ 2
apply pow_two_nonneg
. -- ⊢ 0 ≤ 1
exact zero_le_one
-- 5ª demostración
-- ===============
example
(h : ∃ x y, z = x^2 + y^2 ∨ z = x^2 + y^2 + 1)
: z ≥ 0 :=
by
rcases h with ⟨a, b, rfl | rfl⟩
. -- ⊢ a ^ 2 + b ^ 2 ≥ 0
nlinarith
. -- ⊢ a ^ 2 + b ^ 2 + 1 ≥ 0
nlinarith
-- 6ª demostración
-- ===============
example
(h : ∃ x y, z = x^2 + y^2 ∨ z = x^2 + y^2 + 1)
: z ≥ 0 :=
by rcases h with ⟨a, b, rfl | rfl⟩ <;> nlinarith
-- Lemas usados
-- ============
-- variable (x y : ℝ)
-- #check (add_nonneg : 0 ≤ x → 0 ≤ y → 0 ≤ x + y)
-- #check (pow_two_nonneg x : 0 ≤ x ^ 2)
-- #check (zero_le_one : 0 ≤ 1)