-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathPruebas_de_P,¬¬(Q∧R)⊢¬¬P∧R.lean
79 lines (67 loc) · 1.49 KB
/
Pruebas_de_P,¬¬(Q∧R)⊢¬¬P∧R.lean
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
-- Pruebas de P, ¬¬(Q ∧ R) ⊢ ¬¬P ∧ R
-- =================================
-- ----------------------------------------------------
-- Ej. 1. (p. 5) Demostrar
-- P, ¬¬(Q ∧ R) ⊢ ¬¬P ∧ R
-- ----------------------------------------------------
import tactic
variables (P Q R : Prop)
open_locale classical
-- 1ª demostración
example
(h1 : P)
(h2 : ¬¬(Q ∧ R))
: ¬¬P ∧ R :=
have h3 : ¬¬P, from not_not_intro h1,
have h4 : Q ∧ R, from not_not.mp h2,
have h5 : R, from and.elim_right h4,
show ¬¬P ∧ R, from and.intro h3 h5
-- 2ª demostración
example
(h1 : P)
(h2 : ¬¬(Q ∧ R))
: ¬¬P ∧ R :=
have h3 : ¬¬P, from not_not_intro h1,
have h4 : Q ∧ R, from not_not.mp h2,
have h5 : R, from and.elim_right h4,
and.intro h3 h5
-- 3ª demostración
example
(h1 : P)
(h2 : ¬¬(Q ∧ R))
: ¬¬P ∧ R :=
have h3 : ¬¬P, from not_not_intro h1,
have h4 : Q ∧ R, from not_not.mp h2,
have h5 : R, from h4.2,
and.intro h3 h5
-- 5ª demostración
example
(h1 : P)
(h2 : ¬¬(Q ∧ R))
: ¬¬P ∧ R :=
and.intro (not_not_intro h1) (not_not.mp h2).2
-- 6ª demostración
example
(h1 : P)
(h2 : ¬¬(Q ∧ R))
: ¬¬P ∧ R :=
begin
split,
{ exact not_not_intro h1, },
{ push_neg at h2,
exact h2.2, },
end
-- 7ª demostración
example
(h1 : P)
(h2 : ¬¬(Q ∧ R))
: ¬¬P ∧ R :=
-- by hint
by tauto
-- 8ª demostración
lemma aux
(h1 : P)
(h2 : ¬¬(Q ∧ R))
: ¬¬P ∧ R :=
by finish
-- #print axioms aux