-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathMinimimalidad_del_vacio.lean
78 lines (61 loc) · 1.24 KB
/
Minimimalidad_del_vacio.lean
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
-- Regla del conjunto vacío
-- ========================
-- ----------------------------------------------------
-- Ej. 1. Demostrar
-- ∅ ⊆ A
-- ----------------------------------------------------
import data.set
variable U : Type
variables A : set U
variable x : U
open set
-- #reduce (∅ : set U)
-- #reduce x ∈ (∅ : set U)
-- 1ª demostración
example : ∅ ⊆ A :=
begin
intros x h,
simp at h,
exfalso,
exact h,
end
-- 2ª demostración
example : ∅ ⊆ A :=
begin
intros x h,
exfalso,
exact h,
end
-- 3ª demostración
example : ∅ ⊆ A :=
assume x,
assume h : x ∈ (∅ : set U),
show x ∈ A, from false.elim h
-- 4ª demostración
example : ∅ ⊆ A :=
λ x, λ h, false.elim h
-- 5ª demostración
example : ∅ ⊆ A :=
λ _, false.elim
-- 6ª demostración
example : ∅ ⊆ A :=
-- by library_search
empty_subset A
-- 7ª demostración
example : ∅ ⊆ A :=
assume x,
assume h : x ∈ (∅ : set U),
show x ∈ A, from absurd h (not_mem_empty x)
-- 8ª demostración
example : ∅ ⊆ A :=
λ x h, absurd h (not_mem_empty x)
-- 9ª demostración
example : ∅ ⊆ A :=
-- by hint
by tauto
-- 10ª demostración
example : ∅ ⊆ A :=
by finish
-- 11ª demostración
example : ∅ ⊆ A :=
by simp