-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathstreamlit_app.py
623 lines (500 loc) · 28 KB
/
streamlit_app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
import os
import streamlit as st
from streamlit.components.v1 import html
from streamlit_navigation_bar import st_navbar
from bs4 import BeautifulSoup, Tag
from selenium import webdriver
from selenium.webdriver.common.by import By
from selenium.webdriver.common.action_chains import ActionChains
from selenium.webdriver.support.ui import WebDriverWait
from selenium.webdriver.support import expected_conditions as EC
import pycountry
import payloads
import requests
import json
from langdetect import detect
from fpdf import FPDF
import fitz # PyMuPDF
from paddleocr import PaddleOCR
import re
from io import BytesIO
import os
from azure.core.credentials import AzureKeyCredential
from azure.search.documents import SearchClient
import time
# PaddleOCR configuration
ocr = PaddleOCR(
use_gpu=False,
cpu_threads=16,
use_angle_cls=False,
lang="es",
det_db_score_mode="slow",
rec_algorithm="SVTR_LCNet",
e2e_pgnet_mode="accurate",
drop_score=0.5,
)
def login():
st.markdown(
"""
<style>
.login-form {
display: flex;
justify-content: center;
align-items: center;
height: 100vh;
}
</style>
""",
unsafe_allow_html=True
)
with st.form(key='login_form', clear_on_submit=True):
st.header("Login")
user = st.text_input("Username")
pwd = st.text_input("Password", type="password")
submit_button = st.form_submit_button("Login")
if submit_button:
if user == st.secrets["streamlit-credentials"]["username"] and pwd == st.secrets["streamlit-credentials"]["password"]:
st.session_state['logged_in'] = True
st.success("Logged in successfully!")
time.sleep(1)
st.rerun()
else:
st.error("Invalid username or password")
def extract_text_from_pdf(pdf_file):
# Open the PDF file using PyMuPDF
doc = fitz.open(stream=pdf_file.read(), filetype="pdf")
text = ""
for page_num in range(len(doc)):
page = doc.load_page(page_num)
page_text = page.get_text("text") # Attempt to extract text from the page
if page_text.strip(): # If text is not empty
text += page_text
else:
# If no selectable text, use OCR
image = page.get_pixmap()
image_bytes = image.tobytes("png")
# Perform OCR on the page image
ocr_result = ocr.ocr(image_bytes)
page_ocr_text = "\n".join([line[1][0] for line in ocr_result[0]])
text += page_ocr_text + "\n"
doc.close()
return text
def gen_pdf(text):
pdf = FPDF()
pdf.add_page()
pdf.add_font('DejaVuSans', '', 'resources/fonts/DejaVuSans.ttf', uni=True)
pdf.set_font('DejaVuSans', '', 12)
pdf.multi_cell(0, 10, text)
pdf.output("output.pdf")
def oai_request(endpoint, api_key, payload):
headers = {
"Content-Type": "application/json",
"api-key": api_key,
}
try:
response = requests.post(endpoint, headers=headers, json=payload)
response.raise_for_status() # Will raise an HTTPError if the HTTP request returned an unsuccessful status code
except requests.RequestException as e:
raise SystemExit(f"Failed to make the request. Error: {e}")
return response.json()
def aai_request(endpoint, api_key, index_name, search_text, top, filter_expression = None):
search_client = SearchClient(endpoint, index_name, AzureKeyCredential(api_key))
results = search_client.search(search_text=search_text, top=top, filter = filter_expression)
return results
def get_trainings_recommendation(selected_name):
aaisearch_services_credentials = st.secrets["azure-ai-search-services"]
oai_services_credentials = st.secrets["azure-oai-services"]
tr_endpoint = oai_services_credentials["TRAININGS_RECOMMENDER_ENDPOINT"]
tr_api_key = oai_services_credentials["API_KEY"]
# Step 1. Request the RAG Azure Index the top 2 most similar documents with strengths and weaknesses for the member filter
filter_expression = f"member eq '{selected_name.lower()}'"
results = aai_request(endpoint = aaisearch_services_credentials["AZURE_SEARCH_SERVICE_ENDPOINT"],
api_key = aaisearch_services_credentials["AZURE_SEARCH_API_KEY"],
index_name = aaisearch_services_credentials["AZURE_SEARCH_FEEDBACKS_INDEX"],
search_text = f"strengths and weaknesses",
filter_expression = filter_expression,
top = 2)
# Step 1.1 Get the information ordered for the LLM request
team_l, name_l, kind_of_l, content_l = [], [], [], [],
for doc in results:
team_l.append(doc['team'])
name_l.append(doc['member'])
kind_of_l.append(doc['kind_of'])
content_l.append(doc['content'])
# Step 2. Send those documents to the LLM
payload = payloads.keyword_summarizer_payload(team_l, name_l, kind_of_l, content_l)
keywords_json = json.loads(oai_request(endpoint=tr_endpoint,
api_key=tr_api_key,
payload=payload)["choices"][0]["message"]["content"])
# Step 3. Get the keywords from OpenAI response and search best course fit
search_keywords = ', '.join(keywords_json["feedback_keywords"].values())
results = aai_request(endpoint = aaisearch_services_credentials["AZURE_SEARCH_SERVICE_ENDPOINT"],
api_key = aaisearch_services_credentials["AZURE_SEARCH_API_KEY"],
index_name = aaisearch_services_credentials["AZURE_SEARCH_TRAININGS_INDEX"],
search_text = search_keywords,
top = 5)
best_course_fit = []
for r in results:
filtered = {key: r[key] for key in ['title', 'subtitle', 'key_learnings', 'link']}
best_course_fit.append(filtered)
# Step 4. Get the response unified for the user
payload = payloads.training_recommender_payload(keywords_json, best_course_fit)
keywords_json = json.loads(oai_request(endpoint=tr_endpoint,
api_key=tr_api_key,
payload=payload)["choices"][0]["message"]["content"])
# Step 5. Return the results
return keywords_json
def write_job_offer(user_prompt, job_role, include_salary, min_salary, max_salary, currency):
aaisearch_services_credentials = st.secrets["azure-ai-search-services"]
oai_services_credentials = st.secrets["azure-oai-services"]
tr_endpoint = oai_services_credentials["JOB_OFFERS_WRITING_ENDPOINT"]
tr_api_key = oai_services_credentials["API_KEY"]
# Step 1. Request the RAG Azure Index the top 2 most similar offers
results = aai_request(endpoint = aaisearch_services_credentials["AZURE_SEARCH_SERVICE_ENDPOINT"],
api_key = aaisearch_services_credentials["AZURE_SEARCH_API_KEY"],
index_name = aaisearch_services_credentials["AZURE_SEARCH_CAREERS_INDEX"],
search_text = f"{job_role}",
top = 2)
offer_l, conditions_l = [], []
for offer in results:
offer_l.append(offer['offer'])
conditions_l.append(offer['conditions'])
# Step 2. Call the LLM to craft a new offer based on the information given
payload = payloads.job_offer_writing_payload(offer_l, conditions_l, job_role, user_prompt, include_salary, min_salary, max_salary, currency)
crafted_offer = json.loads(oai_request(endpoint=tr_endpoint,
api_key=tr_api_key,
payload=payload)["choices"][0]["message"]["content"])
# Step 3. Show the results
return crafted_offer
st.set_page_config(initial_sidebar_state="collapsed", layout="wide")
pages = ["Feedback Formatter", "Feedback Generator", "Training Recommendation", "Job Offers Writing", "Notion documentation"]
logo_path = "resources/images/factorial_logo.svg"
urls = {"Notion documentation" : "https://factorial-ai-specialist-jacob-bamio.notion.site/Factorial-AI-Specialist-7589768dc24848f38b8eb4728256fa10"}
styles = {
"nav" : {
"background-color": "#e51a43",
"justify-content" : "left"
},
"div": {
"max-width": "32rem",
},
"img" : {
"padding-right" : "50px"
},
"span" : {
"color" : "#ffffff",
"padding" : "10px 20px",
"white-space" : "nowrap",
},
"active" : {
"color" : "var(--text-color)",
"background-color" : "#ffffff",
"font-weight" : "normal",
"padding" : "10px 20px"
}
}
page = st_navbar(pages,
logo_path = logo_path,
urls = urls,
styles = styles,
options = True)
st.markdown(
"""
<style>
.streamlit-expanderHeader {
color: #e51a43;
}
.stAlert {
background-color: #f0f0f0; /* Background color for info */
border-left: 4px solid #e51a43; /* Custom color for the left border */
}
</style>
""",
unsafe_allow_html=True
)
if 'logged_in' not in st.session_state:
st.session_state['logged_in'] = False
if not st.session_state['logged_in']:
st.warning("Please, log in with your credentials.")
login()
else:
if page == "Home":
st.header("Welcome to the POC Streamlit interface of Factorial AI")
st.subheader("What's exactly a POC?")
st.markdown("""
A POC (Proof Of Concept) is a prototype of a project that aims to:\n
- Verify Feasibility: Confirm that the concept or technology can work as intended in practice.
- Demonstrate Value: Show the potential benefits or advantages of the concept.
- Identify Risks and Challenges: Uncover potential issues or obstacles early in the process.
- Validate Assumptions: Test key assumptions and hypotheses related to the concept.
In this specific case, I have developed some AI tools for HR. You can use each one of them by clicking each one of the header tabs.
""")
st.subheader("Briefly description of each tab")
col_left, col_right = st.columns(2)
col_left.markdown("""
##### Feedback Formatter \n
Adapt given feedback with AI, to make sure it fits a 4A Framework, and the 8 scales of the cultural map.
##### Training Recommendation \n
Provide the right training choices for each employee based on our database of available trainings with AI.
##### Notion documentation \n
The easiest to explain! This is a fast shortcut to the in-depth documentation of each feature. \n
- How was it developed?
- What technologies are involved?
- What's the workflow?
- Where can I see the code for this feature?
Every question you have will be outlined right there. And if I left something missing, I'll be there during the technical interview to outline those myself.
""")
col_right.markdown("""
##### Job Offers Writing \n
Writes job offers based on context of past offers, making it easier and faster to recruiters to be creative and find the best candidates.
##### Feedback Generator \n
Crafts different kind of feedbacks with AI. 360, 1:1, performance review. An all in one tool for testing.
##### BBDDize Feedbacks \n
Gets into a database the key phrases and key words of every given feedback, to make it more efficient at the time of recommending trainings.
""")
elif page == "Feedback Formatter":
if "feedback_formatted_response" not in st.session_state:
st.session_state.feedback_formatted_response = None
if "extracted" not in st.session_state:
st.session_state.extracted = False
if "feedback_written" not in st.session_state:
st.session_state.feedback_written = None
if "previous_file" not in st.session_state:
st.session_state.previous_file = None
st.header("Feedback Formatter")
feedback_file = st.file_uploader("Upload a PDF file with feedback to format", type="pdf", accept_multiple_files=False)
if feedback_file is not None and feedback_file != st.session_state.previous_file:
st.session_state.previous_file = feedback_file
st.session_state.feedback_written = extract_text_from_pdf(feedback_file)
st.session_state.extracted = True
elif feedback_file is None:
st.session_state.extracted = False
st.session_state.feedback_written = None
st.session_state.feedback_written = st.text_area("Write down your feedback right here", value=st.session_state.feedback_written or "", height=300, disabled=st.session_state.extracted)
countries = [country.name for country in pycountry.countries]
col_left, col_right = st.columns([3, 2])
selected_country = col_left.selectbox("Choose the country of the person receiving feedback", countries)
col_right.markdown("<div style='width: 1px; height: 28px'></div>", unsafe_allow_html=True)
if col_right.button("Format Feedback", use_container_width=True):
if st.session_state.feedback_written:
oai_services_credentials = st.secrets["azure-oai-services"]
payload = payloads.feedback_formatter_payload(culture=selected_country,
language=detect(st.session_state.feedback_written),
initial_feedback=st.session_state.feedback_written)
with st.spinner("Formatting feedback..."):
st.session_state.feedback_formatted_response = json.loads(oai_request(endpoint=oai_services_credentials["FEEDBACK_FORMATTER_ENDPOINT"],
api_key=oai_services_credentials["API_KEY"],
payload=payload)["choices"][0]["message"]["content"])
st.subheader("Feedback Formatted")
ff_col_left, ff_col_right = st.columns(2)
if st.session_state.feedback_formatted_response is not None:
try:
# Get the dict information inside the response.json()
feedback_formatted = st.session_state.feedback_formatted_response["feedback_formatted"]
feedback_analysis = st.session_state.feedback_formatted_response["feedback_analysis"]
short_tip = st.session_state.feedback_formatted_response["short_tip"]
top_well_done = st.session_state.feedback_formatted_response["top_well_done"]
top_improvers = st.session_state.feedback_formatted_response["top_improvers"]
ff_col_left.subheader("AI Generated Feedback")
ff_col_left.write(feedback_formatted)
binary_pdf = gen_pdf(feedback_formatted)
ff_col_left.write(f"A short tip: {short_tip}")
with open("output.pdf", "rb") as file:
btn=ff_col_left.download_button(
label="Generate PDF with the AI improved feedback!",
data=file,
file_name="feedback.pdf",
mime="application/pdf"
)
ff_col_right.subheader("AI Analysis about your feedback")
ff_col_right.info(feedback_analysis)
placeholder_warning = ff_col_right.empty()
col1, col2, col3 = ff_col_right.columns(3)
if len(top_well_done) == 0:
placeholder_warning.warning(f"The feedback didn't adapt properly to the culture of {selected_country}. Try improving:")
for i, col in enumerate([col1, col2, col3]):
if i < len(top_improvers):
col.error(top_improvers[i])
else:
for i, col in enumerate([col1, col2, col3]):
if i < len(top_well_done):
col.success(top_well_done[i])
if i < len(top_improvers):
col.warning(top_improvers[i])
except:
st.warning("An error ocurred during the request. Please try again.")
elif page == "Training Recommendation":
st.header("Training Recommendation")
st.write("In this tab, you will have to choose one of the members in our team, and based in their feedback database, our AI is going to recommend the best training fit for him.")
teams = {
"Direction Team": [
{"title": "Engineering Director", "name": "Ayaan"},
{"title": "Product Director", "name": "Mei-Ling"},
{"title": "Design Director", "name": "Santiago"}
],
"Generic Resources Team": [
{"title": "Data Analytics Engineer", "name": "Amara"},
{"title": "AI Engineer", "name": "Sven"}
],
"Recruitment Squad": [
{"title": "Product Manager", "name": "Hana"},
{"title": "Engineering Manager", "name": "Luca"},
{"title": "Backend Engineer", "name": "Priya"},
{"title": "Frontend Engineer", "name": "Yuki"},
{"title": "Designer", "name": "Omar"}
],
"Performance Squad": [
{"title": "Product Manager", "name": "Tatiana"},
{"title": "Engineering Manager", "name": "Thiago"},
{"title": "Backend Engineer", "name": "Aisling"},
{"title": "Frontend Engineer", "name": "Dimitri"},
{"title": "Designer", "name": "Fatima"}
],
"Engagement Squad": [
{"title": "Product Manager", "name": "Anders"},
{"title": "Engineering Manager", "name": "Leila"},
{"title": "Backend Engineer", "name": "Pavel"},
{"title": "Frontend Engineer", "name": "Ines"},
{"title": "Designer", "name": "Aksel"}
]
}
selected_team = st.selectbox("Choose a team", list(teams.keys()))
team_members = teams[selected_team]
st.markdown("""
<style>
.stButton > button {
height: 150px;
width: 250px;
font-size: 20px;
text-align: center;
line-height: 30px;
}
</style>
""", unsafe_allow_html=True)
cols = st.columns(5)
selected_name = None
for i, member in enumerate(team_members):
if cols[i].button(f"## **{member['title']}**\n\n{member['name']}"):
selected_name = member["name"]
with st.spinner(f"Analyzing {selected_name}'s received feedback..."):
training_recommendations = get_trainings_recommendation(selected_name)
if selected_name:
try:
st.subheader(f"Training recommendations for {selected_name}")
st.info(training_recommendations["analysis"])
st.info(training_recommendations["link_1"])
st.info(training_recommendations["link_2"])
st.info(training_recommendations["link_3"])
except:
st.warning("Something went wrong. Please try again in a few seconds.")
else:
st.subheader("Select a team member to see their training recommendation.")
elif page == "Job Offers Writing":
st.header("Job Offers Writing")
st.write("In this tab, our AI will craft a job offer, based on previous offers from Factorial. The recruiters, will just have to include the role, and, if they want to, set some constraints.")
import streamlit as st
col1, col2, col3, col4, col5 = st.columns(5)
include_salary = col1.checkbox("Include Salary?")
job_role = col2.text_input("Job role")
min_salary = col3.number_input("Minimum Salary", min_value=0, step=1000, disabled = not include_salary, value = 15000)
max_salary = col4.number_input("Maximum Salary", min_value=0, step=1000, disabled = not include_salary, value = 30000)
currency = col5.selectbox("Currency", ["EUR", "USD", "GBP", "CAD", "AUD"], disabled = not include_salary)
user_prompt = st.text_area(label = "Introduce some extra guidance for the AI!", height = 250,
placeholder = "This offer shouldn't have any emoji (even being a little dull if you ask me), and include the following links:")
crafted_offer = None
if st.button("Write the offer!", use_container_width=True):
with st.spinner("Crafting a brand new offer with AI..."):
crafted_offer = write_job_offer(user_prompt, job_role, include_salary, min_salary, max_salary, currency)
st.subheader("Job Offer")
if crafted_offer != None:
try:
filtered_conditions = {key: value for key, value in crafted_offer["conditions"].items() if value}
infos = list(filtered_conditions.values())
for i in range(0, len(infos), 3):
cols = st.columns(3)
for idx, value in enumerate(infos[i:i+3]):
cols[idx].info(f"{value}")
st.write(crafted_offer["offer"])
except Exception as e:
st.warning("Something went wrong. Please, wait a few seconds and try again.")
st.write(e)
elif page == "Feedback Generator":
if "feedback_generated_response" not in st.session_state:
st.session_state.feedback_generated_response = None
st.header("Generate Feedback with AI")
st.subheader("Select the kind of feedback you want to craft")
col_left, col_mid, col_right = st.columns(3)
feedback_choice = col_left.radio("Feedback choices", ["360 feedback",
"1 : 1",
"Performance Review",
"Self Evaluation",
"Horizontal Feedback"])
if feedback_choice != "360 feedback":
mid_left, mid_right = col_mid.columns(2)
if feedback_choice == "1 : 1":
giver = mid_left.radio("Who gives the feedback?", ["Manager", "Employee"])
if giver == "Manager":
receiver = mid_right.radio("Who receives the feedback?", ["Employee"])
else:
receiver = mid_right.radio("Who receives the feedback?", ["Manager"])
elif feedback_choice == "Performance Review":
giver = mid_left.radio("Who gives the feedback?", ["Manager"])
receiver = mid_right.radio("Who receives the feedback?", ["Employee"])
elif feedback_choice == "Self Evaluation" or feedback_choice == "Horizontal Feedback":
giver = mid_left.radio("Who gives the feedback?", ["Manager", "Employee"])
if giver == "Manager":
receiver = mid_right.radio("Who receives the feedback?", ["Manager"])
else:
receiver = mid_right.radio("Who receives the feedback?", ["Employee"])
giver_name = mid_left.text_input(label="Name of the one giving feedback", placeholder="Paul")
receiver_name = mid_right.text_input(label="Name of the one receiving feedback", placeholder="Luca")
roles = giver + ", " + receiver
giver_number = 1
receiver_number = 1
custom_prompt = col_right.text_area(label="Introduce an user prompt to specify anything you want something to be said in this feedback",
placeholder="Paul is so happy with Luca",
height=132)
else:
mid_left, mid_right = col_mid.columns(2)
receiver_name = col_left.text_input("Who are receiving the feedback?", placeholder = "Paul, Ariana")
giver_number = mid_left.number_input("How many people is giving feedback?", step = 1, max_value = 5)
receiver_number = mid_right.number_input("How many people is receiving feedback?", step = 1, max_value = 5)
giver_name = col_mid.text_input(label = "Introduce the names separated by comma, of the people involved",
placeholder = "Paul, Ariana, Luis")
roles = col_mid.text_input(label = "Introduce the roles separated by comma, of the people involved",
placeholder = "Manager, Developer, Designer")
custom_prompt = col_right.text_area(label = "Introduce an user prompt to specify anything you want something to be said in this feedbacks",
placeholder = "Everyone is so happy with Paul, so the feedback must be good, with just a few constructive things to say",
height=205)
if st.button("Craft feedback with AI", use_container_width=True):
if custom_prompt:
oai_services_credentials = st.secrets["azure-oai-services"]
payload = payloads.feedback_generation(kind_of = feedback_choice,
giver_number = giver_number,
receiver_number = receiver_number,
giver_name = giver_name,
receiver_name = receiver_name,
roles = roles,
custom_prompt = custom_prompt)
with st.spinner("Crafting custom feedback..."):
st.session_state.feedback_generated_response = json.loads(oai_request(endpoint=oai_services_credentials["FEEDBACK_GENERATOR_ENDPOINT"],
api_key=oai_services_credentials["API_KEY"],
payload=payload)["choices"][0]["message"]["content"])
st.subheader("Feedback created")
try:
if st.session_state.feedback_generated_response != None:
col1, col2 = st.columns(2)
column_switch = True
for key, feedback_item in st.session_state.feedback_generated_response.items():
if key.startswith("feedback_"):
if column_switch:
with col1:
st.subheader(f"From {feedback_item['from']} to {feedback_item['to']}")
st.info(feedback_item['feedback'])
else:
with col2:
st.subheader(f"From {feedback_item['from']} to {feedback_item['to']}")
st.info(feedback_item['feedback'])
column_switch = not column_switch
except:
st.warning("An error ocurred during the request. Please try again")