-
Notifications
You must be signed in to change notification settings - Fork 16
/
extend_layers.py
347 lines (278 loc) · 17.3 KB
/
extend_layers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
# <-*- encoding:utf-8 -*->
"""
self-defined external Layer
"""
try:
import cPickle as pickle
except ImportError:
import pickle
import numpy as np
import theano
import theano.tensor as T
import lasagne
import config
__author__ = 'jacoxu & shin'
class InnerProductLayer(lasagne.layers.MergeLayer):
def __init__(self, incomings, nonlinearity=None, **kwargs):
super(InnerProductLayer, self).__init__(incomings, **kwargs)
self.nonlinearity = nonlinearity
if len(incomings) != 2:
raise NotImplementedError
def get_output_shape_for(self, input_shapes):
return input_shapes[0][:2]
def get_output_for(self, inputs, **kwargs):
M = inputs[0]
u = inputs[1]
output = T.batched_dot(M, u)
if self.nonlinearity is not None:
output = self.nonlinearity(output)
return output
class BatchedDotLayer(lasagne.layers.MergeLayer):
def __init__(self, incomings, **kwargs):
super(BatchedDotLayer, self).__init__(incomings, **kwargs)
if len(incomings) != 2:
raise NotImplementedError
def get_output_shape_for(self, input_shapes):
return input_shapes[1][0], input_shapes[1][2]
def get_output_for(self, inputs, **kwargs):
return T.batched_dot(inputs[0], inputs[1])
class SumLayer(lasagne.layers.Layer):
def __init__(self, incoming, axis, **kwargs):
super(SumLayer, self).__init__(incoming, **kwargs)
self.axis = axis
def get_output_shape_for(self, input_shape):
return input_shape[:self.axis] + input_shape[self.axis+1:]
def get_output_for(self, input, **kwargs):
return T.sum(input, axis=self.axis)
class TemporalEncodingLayer(lasagne.layers.Layer):
def __init__(self, incoming, time_W=lasagne.init.Normal(std=0.1), **kwargs):
super(TemporalEncodingLayer, self).__init__(incoming, **kwargs)
self.time_W = self.add_param(time_W, self.input_shape[-2:], name="T")
def get_output_shape_for(self, input_shape):
return input_shape
def get_output_for(self, sent_vecs, **kwargs):
return sent_vecs + self.time_W
class TemporalEncodingLayerMask(lasagne.layers.MergeLayer):
def __init__(self, incomings, time_W=lasagne.init.Normal(std=0.1), **kwargs):
super(TemporalEncodingLayerMask, self).__init__(incomings, **kwargs)
if len(incomings) != 2:
raise NotImplementedError
self.time_W = self.add_param(time_W, self.input_shapes[0][-2:], name="T")
def get_output_shape_for(self, input_shapes):
return input_shapes[0]
def get_output_for(self, inputs, **kwargs):
seq_vecs = inputs[0]
seq_embed_mask = inputs[1]
return T.mul(seq_vecs + self.time_W, seq_embed_mask)
class ContentAttentionLayer(lasagne.layers.MergeLayer):
"""Attention mechanism: att = v'(Wq+Um), softmax"""
def __init__(self, incomings, W_align, U_align, v_align,
batch_size, max_seq_story, max_sent_enc, embedding_size, align_hidden_size, top_k,
nonlinearity=lasagne.nonlinearities.softmax, **kwargs):
super(ContentAttentionLayer, self).__init__(incomings, **kwargs)
if len(incomings) != len(('l_C_embedding_flatten', 'l_queries_vec', 'l_stories_in', 'l_seq_prob_mem_nn')):
raise NotImplementedError
self.batch_size = batch_size
self.max_seq_story = max_seq_story
self.max_sent_enc = max_sent_enc
self.top_k = top_k
self.nonlinearity = nonlinearity
self.W_align = self.add_param(W_align, (embedding_size, align_hidden_size), name="word_mem_W_align")
self.U_align = self.add_param(U_align, (embedding_size, align_hidden_size), name="word_mem_U_align")
self.v_align = self.add_param(v_align, (align_hidden_size, 1), name="word_mem_v_align")
def get_output_shape_for(self, input_shapes):
return input_shapes[0]
def get_output_for(self, inputs, **kwargs):
l_C_embedding_flatten = inputs[0] # (batch_size, max_seq_story * max_sent_enc, embedding_size)
l_queries_vec = inputs[1] # (batch_size, embedding_size)
l_stories_in = inputs[2] # (self.batch_size * self.max_seq_story * self.max_sent_enc, )
l_seq_prob_mem_nn = inputs[3] # (self.batch_size, self.max_seq_story)
l_words_mask = T.neq(l_stories_in, 0)
############
if (self.top_k < 0) or (self.top_k > self.max_seq_story):
l_words_mask = l_words_mask
else:
non_k_max_size = self.max_seq_story - self.top_k
batch_size_idx = [i for i in range(self.batch_size)] * non_k_max_size
batch_size_idx = np.array(batch_size_idx).reshape(non_k_max_size, self.batch_size).T
batch_size_idx = batch_size_idx.reshape((non_k_max_size*self.batch_size,))
seq_prob_non_k_max_idx = T.argsort(l_seq_prob_mem_nn, axis=1)[:, :non_k_max_size]
seq_prob_non_k_max_idx = seq_prob_non_k_max_idx.reshape((non_k_max_size*self.batch_size,))
l_words_mask = T.set_subtensor(l_words_mask[batch_size_idx, seq_prob_non_k_max_idx, :], 0)
############
l_words_mask = l_words_mask.reshape((self.batch_size, self.max_seq_story*self.max_sent_enc))
# (batch_size, max_seq_story * max_sent_enc, embedding_size) dot (embedding_size, align_hidden_size)
# -> (batch_size, max_seq_story * max_sent_enc, align_hidden_size)
hUa = T.dot(l_C_embedding_flatten, self.U_align)
# (batch_size, embedding_size) * (embedding_size, align_hidden_size)
# -> (batch_size, align_hidden_size)
sWa = T.dot(l_queries_vec, self.W_align)
# -> (batch_size, 1, align_hidden_size)
sWa = sWa.dimshuffle(0, 'x', 1)
# -> (batch_size, max_seq_story * max_sent_enc, align_hidden_size)
tanh_sWahUa = lasagne.nonlinearities.tanh(sWa+hUa)
# -> (batch_size, max_seq_story * max_sent_enc, 1)
enerage = T.dot(tanh_sWahUa, self.v_align)
# -> (batch_size, max_seq_story * max_sent_enc)
enerage = T.reshape(enerage, (enerage.shape[0], enerage.shape[1]))
enerage = T.mul(enerage, l_words_mask) - (1-l_words_mask)*1000000
alpha = self.nonlinearity(enerage)
return alpha
class MaskingLayer(lasagne.layers.Layer):
def __init__(self, incoming, **kwargs):
super(MaskingLayer, self).__init__(incoming, **kwargs)
def get_output_shape_for(self, input_shape):
return input_shape
def get_output_for(self, input, **kwargs):
return T.neq(input, 0)
class TransposedDenseLayer(lasagne.layers.DenseLayer):
def __init__(self, incoming, num_units, W=lasagne.init.GlorotUniform(),
b=lasagne.init.Constant(0.), nonlinearity=lasagne.nonlinearities.rectify,
**kwargs):
super(TransposedDenseLayer, self).__init__(incoming, num_units, W, b, nonlinearity, **kwargs)
def get_output_shape_for(self, input_shape):
return input_shape[0], self.num_units
def get_output_for(self, input, **kwargs):
if input.ndim > 2:
input = input.flatten(2)
activation = T.dot(input, self.W.T)
if self.b is not None:
activation = activation + self.b.dimshuffle('x', 0)
return self.nonlinearity(activation)
class Repeat(lasagne.layers.Layer):
def __init__(self, incoming, n, **kwargs):
super(Repeat, self).__init__(incoming, **kwargs)
self.n = n
def get_output_shape_for(self, input_shape):
return input_shape[0], self.n, input_shape[1]
def get_output_for(self, input, **kwargs):
assert input.ndim == 2
input = input.dimshuffle((0, 'x', 1))
return T.extra_ops.repeat(input, self.n, axis=1)
class WordLevelMemoryLayer(lasagne.layers.MergeLayer):
def __init__(self, incomings, vocab, A_embed_W, A_time_W, C_embed_W, W_align, U_align, v_align,
non_linearity=lasagne.nonlinearities.softmax, **kwargs):
super(WordLevelMemoryLayer, self).__init__(incomings, **kwargs)
if len(incomings) != len(('l_queries_vec', 'l_stories_in', 'l_stories_pe_in', 'l_seq_embed_masks_in')):
raise NotImplementedError
# output size: [batch_size, embed_size]
batch_size, embedding_size = self.input_shapes[0]
batch_size, max_seq_story, max_sent_enc = self.input_shapes[1]
l_queries_vec = lasagne.layers.InputLayer(shape=(batch_size, embedding_size))
l_stories_in = lasagne.layers.InputLayer(shape=(batch_size, max_seq_story, max_sent_enc))
l_stories_pe_in = lasagne.layers.InputLayer(shape=(batch_size, max_seq_story, max_sent_enc, embedding_size))
l_seq_embed_masks_in = lasagne.layers.InputLayer(shape=(batch_size, max_seq_story))
# # reshape
l_stories_emb = lasagne.layers.ReshapeLayer(l_stories_in, shape=(batch_size * max_seq_story * max_sent_enc, ))
l_A_embedding = lasagne.layers.EmbeddingLayer(l_stories_emb, len(vocab) + 1, embedding_size, W=A_embed_W,
name='A_embedding_word_mem')
# reshape back
l_A_embedding = lasagne.layers.ReshapeLayer(l_A_embedding, shape=(batch_size, max_seq_story, max_sent_enc,
embedding_size))
l_A_embedding = lasagne.layers.ElemwiseMergeLayer((l_A_embedding, l_stories_pe_in), merge_function=T.mul)
# sum all the words in one sentence
l_A_stories_vec = SumLayer(l_A_embedding, axis=2)
if config.enable_time:
l_A_stories_vec = TemporalEncodingLayerMask((l_A_stories_vec, l_seq_embed_masks_in), time_W=A_time_W,
name='A_time_word_mem')
# InnerProduct((batch32, seq10, embed20) * (batch32 * embed20)) --> (batch32, seq10)
l_seq_prob_mem_nn = InnerProductLayer((l_A_stories_vec, l_queries_vec), nonlinearity=non_linearity)
l_C_embedding = lasagne.layers.EmbeddingLayer(l_stories_emb, len(vocab) + 1, embedding_size, W=C_embed_W,
name='C_embedding_word_mem')
self.C_embed_W = l_C_embedding.W
l_C_embedding_flatten = lasagne.layers.ReshapeLayer(l_C_embedding,
shape=(batch_size, max_seq_story * max_sent_enc,
embedding_size))
l_stories_gru = lasagne.layers.ReshapeLayer(l_stories_in, shape=(batch_size, max_seq_story * max_sent_enc))
l_words_mask = MaskingLayer(l_stories_gru)
l_gru_forward = lasagne.layers.recurrent.GRULayer(l_C_embedding_flatten, num_units=embedding_size,
backwards=False, mask_input=l_words_mask)
l_gru_backward = lasagne.layers.recurrent.GRULayer(l_C_embedding_flatten, num_units=embedding_size,
backwards=True, mask_input=l_words_mask)
l_C_embedding_flatten = lasagne.layers.ElemwiseSumLayer((l_gru_forward, l_gru_backward))
l_word_prob_word_mem = ContentAttentionLayer((l_C_embedding_flatten, l_queries_vec, l_stories_in,
l_seq_prob_mem_nn),
W_align=W_align, U_align=U_align, v_align=v_align,
batch_size=batch_size, max_seq_story=max_seq_story,
max_sent_enc=max_sent_enc, embedding_size=embedding_size,
align_hidden_size=embedding_size, top_k=config.top_k,
nonlinearity=lasagne.nonlinearities.softmax)
self.l_queries_vec = l_queries_vec
self.l_stories_in = l_stories_in
self.l_stories_pe_in = l_stories_pe_in
self.l_seq_embed_masks_in = l_seq_embed_masks_in
self.model = l_word_prob_word_mem
params = lasagne.layers.helper.get_all_params(self.model, trainable=True)
values = lasagne.layers.helper.get_all_param_values(self.model, trainable=True)
for p, v in zip(params, values):
self.add_param(p, v.shape, name=p.name)
def get_output_shape_for(self, input_shapes):
return lasagne.layers.helper.get_output_shape(self.model)
def get_output_for(self, inputs, **kwargs):
return lasagne.layers.helper.get_output(self.model, {self.l_queries_vec: inputs[0],
self.l_stories_in: inputs[1],
self.l_stories_pe_in: inputs[2],
self.l_seq_embed_masks_in: inputs[3]})
class SentLevelMemoryLayer(lasagne.layers.MergeLayer):
def __init__(self, incomings, vocab, embedding_size, A_embed_W, A_time_W, C_embed_W, C_time_W,
non_linearity=lasagne.nonlinearities.softmax, hops_num=0, **kwargs):
super(SentLevelMemoryLayer, self).__init__(incomings, **kwargs)
if len(incomings) != len(('l_stories_in', 'l_queries_vec', 'l_stories_pe_in', 'l_seq_embed_masks_in')):
raise NotImplementedError
batch_size, max_seq_story, max_sent_enc = self.input_shapes[0]
l_stories_in = lasagne.layers.InputLayer(shape=(batch_size, max_seq_story, max_sent_enc))
l_queries_vec = lasagne.layers.InputLayer(shape=(batch_size, embedding_size))
l_stories_pe_in = lasagne.layers.InputLayer(shape=(batch_size, max_seq_story, max_sent_enc, embedding_size))
l_seq_embed_masks_in = lasagne.layers.InputLayer(shape=(batch_size, max_seq_story))
# reshape
l_stories_in = lasagne.layers.ReshapeLayer(l_stories_in, shape=(batch_size * max_seq_story * max_sent_enc, ))
l_A_embedding = lasagne.layers.EmbeddingLayer(l_stories_in, len(vocab) + 1, embedding_size, W=A_embed_W,
name='A_embedding'+str(hops_num))
self.A_embed_W = l_A_embedding.W
# reshape back
l_A_embedding = lasagne.layers.ReshapeLayer(l_A_embedding, shape=(batch_size, max_seq_story, max_sent_enc,
embedding_size))
l_A_embedding = lasagne.layers.ElemwiseMergeLayer((l_A_embedding, l_stories_pe_in), merge_function=T.mul)
# sum all the words in one sentence
l_A_stories_vec = SumLayer(l_A_embedding, axis=2)
if config.enable_time:
l_A_stories_vec = TemporalEncodingLayerMask((l_A_stories_vec, l_seq_embed_masks_in), time_W=A_time_W,
name='A_time'+str(hops_num))
self.A_time_W = l_A_stories_vec.time_W
l_C_embedding = lasagne.layers.EmbeddingLayer(l_stories_in, len(vocab) + 1, embedding_size, W=C_embed_W,
name='C_embedding'+str(hops_num))
self.C_embed_W = l_C_embedding.W
l_C_embedding = lasagne.layers.ReshapeLayer(l_C_embedding, shape=(batch_size, max_seq_story, max_sent_enc,
embedding_size))
l_C_embedding = lasagne.layers.ElemwiseMergeLayer((l_C_embedding, l_stories_pe_in), merge_function=T.mul)
l_C_stories_vec = SumLayer(l_C_embedding, axis=2)
if config.enable_time:
l_C_stories_vec = TemporalEncodingLayerMask((l_C_stories_vec, l_seq_embed_masks_in), time_W=C_time_W,
name='C_time'+str(hops_num))
self.C_time_W = l_C_stories_vec.time_W
# batch_dot(batch,32 * seq,10 * embed,20, batch,32 * embed,20) -> batch,32 * seq,10
l_prob = InnerProductLayer((l_A_stories_vec, l_queries_vec), nonlinearity=non_linearity)
l_weighted_output = BatchedDotLayer((l_prob, l_C_stories_vec))
l_sum = lasagne.layers.ElemwiseSumLayer((l_weighted_output, l_queries_vec))
self.l_stories_in = l_stories_in
self.l_queries_vec = l_queries_vec
self.l_stories_pe_in = l_stories_pe_in
self.l_seq_embed_masks_in = l_seq_embed_masks_in
self.model = l_sum
params = lasagne.layers.helper.get_all_params(self.model, trainable=True)
values = lasagne.layers.helper.get_all_param_values(self.model, trainable=True)
for p, v in zip(params, values):
self.add_param(p, v.shape, name=p.name)
zero_vec_tensor = T.vector()
self.zero_vec = np.zeros(embedding_size, dtype=theano.config.floatX)
self.set_zero = theano.function([zero_vec_tensor], updates=[(x, T.set_subtensor(x[0, :], zero_vec_tensor))
for x in [self.A_embed_W, self.C_embed_W]])
def get_output_shape_for(self, input_shapes):
return lasagne.layers.helper.get_output_shape(self.model)
def get_output_for(self, inputs, **kwargs):
return lasagne.layers.helper.get_output(self.model, {self.l_stories_in: inputs[0],
self.l_queries_vec: inputs[1],
self.l_stories_pe_in: inputs[2],
self.l_seq_embed_masks_in: inputs[3]})
def reset_zero(self):
self.set_zero(self.zero_vec)