-
Notifications
You must be signed in to change notification settings - Fork 16
/
model.py
346 lines (310 loc) · 19.5 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
# -*- coding: utf8 -*-
from __future__ import division
import lasagne
import numpy as np
import theano
import theano.tensor as T
import time
from sklearn import metrics
from sklearn.preprocessing import label_binarize
from extend_layers import SumLayer, TransposedDenseLayer, SentLevelMemoryLayer, WordLevelMemoryLayer
import config
from model_init import ModelInit
__author__ = 'jacoxu & shin'
class Model(ModelInit):
def __init__(self, _log_file):
super(Model, self).__init__(_log_file)
self.log_file = _log_file
self.networks = self.build_network()
def build_network(self):
batch_size = config.batch_size
embed_size = config.embed_size
max_seq_story, max_sent_enc, vocab = self.max_seq_story, self.max_sent_enc, self.vocab
stories, queries, answers = self.stories, self.queries, self.answers
story_texts, query_texts = self.story_texts, self.query_texts
# position encoding (pe)
stories_pe, queries_pe = self.stories_pe, self.queries_pe
seq_embed_masks = self.seq_masks
l_stories_in = lasagne.layers.InputLayer(shape=(batch_size, max_seq_story, max_sent_enc))
l_queries_in = lasagne.layers.InputLayer(shape=(batch_size, max_sent_enc))
l_stories_pe_in = lasagne.layers.InputLayer(shape=(batch_size, max_seq_story, max_sent_enc, embed_size))
l_queries_pe_in = lasagne.layers.InputLayer(shape=(batch_size, 1, max_sent_enc, embed_size))
# mask the sentences
l_seq_embed_masks_in = lasagne.layers.InputLayer(shape=(batch_size, max_seq_story))
# word embedding matrices
A_embed_W, C_embed_W = lasagne.init.Normal(std=config.normal_std), lasagne.init.Normal(std=config.normal_std)
A_time_W, C_time_W = lasagne.init.Normal(std=config.normal_std), lasagne.init.Normal(std=config.normal_std)
# A and B shared the same embedding parameters
B_embed_W = A_embed_W
l_queries_in = lasagne.layers.ReshapeLayer(l_queries_in, shape=(batch_size * max_sent_enc, ))
l_B_embedding = lasagne.layers.EmbeddingLayer(l_queries_in, len(vocab)+1, embed_size, W=B_embed_W,
name='B_embedding')
# B.size = (len(vocab)+1, embed_size)
A_embed_W = l_B_embedding.W
# reshape the embedding size
l_B_embedding = lasagne.layers.ReshapeLayer(l_B_embedding, shape=(batch_size, 1, max_sent_enc, embed_size))
l_B_embedding = lasagne.layers.ElemwiseMergeLayer((l_B_embedding, l_queries_pe_in), merge_function=T.mul)
l_B_embedding = lasagne.layers.ReshapeLayer(l_B_embedding, shape=(batch_size, max_sent_enc, embed_size))
l_queries_vec = SumLayer(l_B_embedding, axis=1)
# initialize the first hop
self.mem_layers = [SentLevelMemoryLayer((l_stories_in, l_queries_vec, l_stories_pe_in, l_seq_embed_masks_in),
vocab, embed_size, A_embed_W=A_embed_W, A_time_W=A_time_W,
C_embed_W=C_embed_W, C_time_W=C_time_W, non_linearity=self.nonlinearity,
hops_num=0)]
for hops_idx in range(1, self.num_hops):
A_embed_W, C_embed_W = self.mem_layers[-1].C_embed_W, lasagne.init.Normal(std=config.normal_std)
if config.enable_time:
A_time_W, C_time_W = self.mem_layers[-1].C_time_W, lasagne.init.Normal(std=config.normal_std)
self.mem_layers += [SentLevelMemoryLayer((l_stories_in, self.mem_layers[-1], l_stories_pe_in,
l_seq_embed_masks_in), vocab, embed_size, A_embed_W=A_embed_W,
A_time_W=A_time_W, C_embed_W=C_embed_W, C_time_W=C_time_W,
non_linearity=self.nonlinearity, hops_num=hops_idx)]
l_pred_sent_mem = TransposedDenseLayer(self.mem_layers[-1], 1, W=self.mem_layers[-1].C_embed_W,
b=None, nonlinearity=lasagne.nonlinearities.softmax)
probas_sent_mem = lasagne.layers.get_output(
l_pred_sent_mem, {l_stories_in: story_texts, l_queries_in: query_texts,
l_stories_pe_in: stories_pe, l_queries_pe_in: queries_pe,
l_seq_embed_masks_in: seq_embed_masks})
probas_sent_mem = T.clip(probas_sent_mem, 1e-7, 1.0-1e-7)
# for word-level memory
if config.n_hops > 1:
l_queries_vec = self.mem_layers[-2]
A_embed_W, C_embed_W = self.mem_layers[-1].A_embed_W, self.mem_layers[-1].C_embed_W
A_time_W = self.mem_layers[-1].A_time_W
W_align = lasagne.init.Normal(std=config.normal_std)
U_align = lasagne.init.Normal(std=config.normal_std)
v_align = lasagne.init.Normal(std=config.normal_std)
l_pred_word_mem = WordLevelMemoryLayer((l_queries_vec, l_stories_in, l_stories_pe_in, l_seq_embed_masks_in),
vocab, A_embed_W=A_embed_W, A_time_W=A_time_W, C_embed_W=C_embed_W,
W_align=W_align, U_align=U_align, v_align=v_align,
non_linearity=self.nonlinearity)
probas_word_mem = lasagne.layers.get_output(
l_pred_word_mem, {l_stories_in: story_texts, l_queries_in: query_texts,
l_stories_pe_in: stories_pe, l_queries_pe_in: queries_pe,
l_seq_embed_masks_in: seq_embed_masks})
probas_word_mem = T.clip(probas_word_mem, 1e-7, 1.0-1e-7)
cost_sent_mem = T.nnet.categorical_crossentropy(probas_sent_mem, answers).sum()
params_sent_mem = lasagne.layers.get_all_params(l_pred_sent_mem, trainable=True)
print 'params_sent_mem:', params_sent_mem
self.log_file.write('params_sent_mem: ' + str(params_sent_mem) + '\n')
grads_sent_mem = T.grad(cost_sent_mem, params_sent_mem)
scaled_grads_sent_mem = lasagne.updates.total_norm_constraint(grads_sent_mem, config.max_norm)
probas_word_mem_vocab = self.transfer_sub_to_vocab_probas(probas_word_mem, story_texts)
probas_word_mem_vocab = T.clip(probas_word_mem_vocab, 1e-7, 1.0-1e-7)
cost_word_mem = T.nnet.categorical_crossentropy(probas_word_mem_vocab, answers).sum()
params_word_mem = lasagne.layers.get_all_params(l_pred_word_mem, trainable=True)
print 'params_word_mem:', params_word_mem
self.log_file.write('params_word_mem: ' + str(params_word_mem) + '\n')
print 'Start to compile, the process may cost tens of minutes ...'
self.log_file.write('Start to compile, the process may cost tens of minutes ...' + '\n')
grads_word_mem = T.grad(cost_word_mem, params_word_mem)
scaled_grads_word_mem = lasagne.updates.total_norm_constraint(grads_word_mem, config.max_norm)
scaled_grads_joint, params_joint = self.merge_grads_and_params([scaled_grads_sent_mem,
scaled_grads_word_mem],
[params_sent_mem, params_word_mem])
cost_joint = cost_sent_mem + cost_word_mem
probas_joint = probas_sent_mem + probas_word_mem_vocab
#
pred_joint = T.argmax(probas_joint, axis=1)
pred_sent_mem = T.argmax(probas_sent_mem, axis=1)
pred_word_mem = T.argmax(probas_word_mem_vocab, axis=1)
updates_joint = lasagne.updates.sgd(scaled_grads_joint, params_joint, learning_rate=self.lr)
updates_sent_mem = lasagne.updates.sgd(scaled_grads_sent_mem, params_sent_mem, learning_rate=self.lr)
updates_word_mem = lasagne.updates.sgd(scaled_grads_word_mem, params_word_mem, learning_rate=self.lr)
givens = {
stories: self.stories_shared,
queries: self.queries_shared,
answers: self.answers_shared,
stories_pe: self.stories_pe_shared,
queries_pe: self.queries_pe_shared,
seq_embed_masks: self.seq_embed_masks_shared
}
self.train_model_joint = theano.function([], [cost_joint, cost_sent_mem, cost_word_mem], givens=givens,
updates=updates_joint)
self.train_model_sent_mem = theano.function([], cost_sent_mem, givens=givens, updates=updates_sent_mem,
on_unused_input='ignore')
self.train_model_word_mem = theano.function([], cost_word_mem, givens=givens, updates=updates_word_mem,
on_unused_input='ignore')
self.compute_pred_joint = theano.function([], outputs=pred_joint, givens=givens, on_unused_input='ignore')
self.compute_pred_sent_mem = theano.function([], outputs=pred_sent_mem, givens=givens, on_unused_input='ignore')
self.compute_pred_word_mem = theano.function([], outputs=pred_word_mem, givens=givens, on_unused_input='ignore')
zero_vec_tensor = T.vector()
self.zero_vec = np.zeros(embed_size, dtype=theano.config.floatX)
self.set_zero = theano.function([zero_vec_tensor], updates=[(x, T.set_subtensor(x[0, :], zero_vec_tensor))
for x in [A_embed_W]])
return l_pred_sent_mem
def transfer_sub_to_vocab_probas(self, probas_word_mem, story_texts):
# probas_word_mem [batch, seq*sent]
# story_texts [batch, seq, sent]
batch_size = config.batch_size
sub_vocab_size = self.max_sent_enc * self.max_seq_story
probas_word_mem_vocab = T.zeros((config.batch_size, self.num_classes))
batch_size_idx = [i for i in range(batch_size)] * sub_vocab_size
batch_size_idx = np.array(batch_size_idx).reshape((sub_vocab_size, batch_size)).T
batch_size_idx = batch_size_idx.reshape((sub_vocab_size*batch_size,))
story_texts_flatten = story_texts.reshape((batch_size*sub_vocab_size,))
probas_word_mem_vocab = T.inc_subtensor(probas_word_mem_vocab[batch_size_idx, story_texts_flatten],
probas_word_mem.reshape((batch_size * sub_vocab_size,)))
return probas_word_mem_vocab
def merge_grads_and_params(self, grads_list, params_list):
param_grad_dict = {}
for _grads_list, _params_list in zip(grads_list, params_list):
for _grad, _param in zip(_grads_list, _params_list):
if _param not in param_grad_dict:
param_grad_dict[_param] = _grad
else:
param_grad_dict[_param] += _grad
return param_grad_dict.values(), param_grad_dict.keys()
def reset_zero(self):
self.set_zero(self.zero_vec)
for _layer in self.mem_layers:
_layer.reset_zero()
def predict(self, dataset, index, flag):
self.set_shared_variables(dataset, index)
if flag == 'joint':
result = self.compute_pred_joint()
elif flag == 'sent_mem':
result = self.compute_pred_sent_mem()
else:
# flag == 'word_mem':
result = self.compute_pred_word_mem()
return result
def compute_f1(self, dataset, flag='joint'):
n_batches = len(dataset['answers']) // config.batch_size
y_pred = np.concatenate([self.predict(dataset, i, flag) for i in xrange(n_batches)]).astype(np.int32) - 1
y_true = [self.vocab.index(y) for y in dataset['answers'][:len(y_pred)]]
errors = []
preds = []
for i, (t, p) in enumerate(zip(y_true, y_pred)):
if t != p:
errors.append((i, self.vocab[p]))
pass
preds.append(self.vocab[p])
return metrics.f1_score(y_true, y_pred, average='weighted', pos_label=None), errors, preds
def train(self, n_epochs=100, shuffle_batch=False):
epoch = 0
n_train_batches = len(self.data['train']['answers']) // config.batch_size
self.lr = self.init_lr
lowest_dev_err = len(self.data['dev']['answers'])
lowest_dev_epoch = 0
while epoch < n_epochs:
epoch += 1
if (epoch % config.lrate_decay_step == 0) and (epoch < config.max_decay_step):
self.lr /= 2.0
indices = range(n_train_batches)
if shuffle_batch:
# synchronously shuffle staries, queries and answers
self.shuffle_sync(self.data['train'])
total_cost_joint = 0
total_cost_sent_mem = 0
total_cost_word_mem = 0
start_time = time.time()
# feed one mini batch
for minibatch_index in indices:
# set value to the theano variables
self.set_shared_variables(self.data['train'], minibatch_index)
self.reset_zero()
cost_joint_list = self.train_model_joint()
total_cost_joint += cost_joint_list[0]
total_cost_sent_mem += cost_joint_list[1]
total_cost_word_mem += cost_joint_list[2]
cost_joint = total_cost_joint / len(indices)
cost_sent_mem = total_cost_sent_mem / len(indices)
cost_word_mem = total_cost_word_mem / len(indices)
end_time = time.time()
print '\n' * 3, '*' * 80
self.log_file.write('\n' * 3 + '*' * 80 + '\n')
print 'Epoch: ', epoch, ', cost_joint:', (cost_joint), \
', cost_sent_mem:', (cost_sent_mem), ', cost_word_mem:', (cost_word_mem), \
', took: %d(s)' % (end_time - start_time)
self.log_file.write('epoch:'+str(epoch)+', cost_joint:'+str(cost_joint) +
', cost_sent_mem:'+str(cost_sent_mem) + ', cost_word_mem:' + str(cost_word_mem) +
', took: '+str(end_time - start_time)+'(s)\n')
print 'TRAIN', '=' * 40
self.log_file.write('TRAIN' + '=' * 40 + '\n')
flag = 'joint'
train_f1, train_errors, train_preds = self.compute_f1(self.data['train'], flag)
print 'train_f1:', train_f1*100
self.log_file.write('train_f1:' + str(train_f1*100) + '\n')
''' Dev '''
print 'DEV', '=' * 40
self.log_file.write('DEV' + '=' * 40 + '\n')
flag = 'sent_mem'
dev_f1, dev_errors_sent_mem, dev_preds_sent_mem = self.compute_f1(self.data['dev'], flag)
print 'dev_f1_sent_mem, dev_errors_sent_mem: ', dev_f1, ', ', len(dev_errors_sent_mem)
self.log_file.write('dev_f1_sent_mem, dev_errors_sent_mem: ' + str(dev_f1) + ', ' +
str(len(dev_errors_sent_mem)) + '\n')
flag = 'word_mem'
dev_f1, dev_errors_word_mem, dev_preds_word_mem = self.compute_f1(self.data['dev'], flag)
print 'dev_f1_word_mem, dev_errors_word_mem: ', dev_f1, ', ', len(dev_errors_word_mem)
self.log_file.write('dev_f1_word_mem, dev_errors_word_mem: ' + str(dev_f1) + ', ' +
str(len(dev_errors_word_mem)) + '\n')
flag = 'joint'
dev_f1, dev_errors, dev_preds = self.compute_f1(self.data['dev'], flag)
print 'dev_f1_joint, dev_errors_joint: ', dev_f1, ', ', len(dev_errors)
self.log_file.write('dev_f1_joint, dev_errors_joint: ' + str(dev_f1) + ', ' +
str(len(dev_errors)) + '\n')
''' Test '''
print 'TEST', '=' * 40
self.log_file.write('TEST' + '=' * 40 + '\n')
flag = 'sent_mem'
test_f1, test_errors_sent_mem, test_preds_sent_mem = self.compute_f1(self.data['test'], flag)
print 'test_f1_sent_mem, test_errors_sent_mem: ', test_f1, ', ', len(test_errors_sent_mem)
self.log_file.write('test_f1_sent_mem, test_errors_sent_mem: ' + str(test_f1) + ', ' +
str(len(test_errors_sent_mem)) + '\n')
flag = 'word_mem'
test_f1, test_errors_word_mem, test_preds_word_mem = self.compute_f1(self.data['test'], flag)
print 'test_f1_word_mem, test_errors_word_mem: ', test_f1, ', ', len(test_errors_word_mem)
self.log_file.write('test_f1_word_mem, test_errors_word_mem: ' + str(test_f1) + ', ' +
str(len(test_errors_word_mem)) + '\n')
flag = 'joint'
test_f1, test_errors, test_preds = self.compute_f1(self.data['test'], flag)
print 'test_f1_joint, test_errors_joint: ', test_f1, ', ', len(test_errors)
self.log_file.write('test_f1_joint, test_errors_joint: ' + str(test_f1) + ', ' +
str(len(test_errors)) + '\n')
if len(dev_errors) < lowest_dev_err:
lowest_dev_err = len(dev_errors)
lowest_dev_epoch = epoch
else:
if ((epoch - lowest_dev_epoch) >= config.stop_iter_dev) and (dev_f1 > 0.1):
print 'Stop the iteration by dev evaluation.'
self.log_file.write('Stop the iteration by dev evaluation.' + '\n')
self.log_file.flush()
break
self.log_file.flush()
def set_shared_variables(self, dataset, index):
stories = np.zeros((config.batch_size, self.max_seq_story), dtype=np.int32)
queries = np.zeros((config.batch_size, ), dtype=np.int32)
answers = np.zeros((config.batch_size, self.num_classes), dtype=np.int32)
stories_pe = np.zeros((config.batch_size, self.max_seq_story, self.max_sent_enc, self.embedding_size),
dtype=theano.config.floatX)
queries_pe = np.zeros((config.batch_size, 1, self.max_sent_enc, self.embedding_size),
dtype=theano.config.floatX)
stories_seq_embed_masks = np.zeros((config.batch_size, self.max_seq_story, self.embedding_size),
dtype=theano.config.floatX)
stories_seq_masks = np.zeros((config.batch_size, self.max_seq_story),
dtype=theano.config.floatX)
indices = range(index*config.batch_size, (index+1)*config.batch_size)
for sample_idx, row in enumerate(dataset['stories'][indices]):
row = row[:self.max_seq_story]
stories[sample_idx, :len(row)] = row
queries[:len(indices)] = dataset['queries'][indices]
for key, mask in [('stories', stories_pe), ('queries', queries_pe)]:
for sample_idx, row in enumerate(dataset[key][indices]):
sentences = self.all_text_idx[row].reshape((-1, self.max_sent_enc))
if key == 'stories':
for seq_idx in np.nonzero(np.sum(sentences, axis=1)):
stories_seq_embed_masks[sample_idx, seq_idx, :] = 1
stories_seq_masks[sample_idx, seq_idx] = 1
for sent_idx, word_list_idx in enumerate(sentences):
J = np.count_nonzero(word_list_idx)
for j in np.arange(J):
mask[sample_idx, sent_idx, j, :] = (1 - (j+1)/J) - \
((np.arange(self.embedding_size)+1)/self.embedding_size)*(1 - 2*(j+1)/J)
answers[:len(indices), 1:self.num_classes] = label_binarize(dataset['answers'][indices], self.vocab)
self.stories_shared.set_value(stories)
self.queries_shared.set_value(queries)
self.answers_shared.set_value(answers)
self.stories_pe_shared.set_value(stories_pe)
self.queries_pe_shared.set_value(queries_pe)
self.seq_embed_masks_shared.set_value(stories_seq_embed_masks)