-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathEuler11.py
60 lines (55 loc) · 3.26 KB
/
Euler11.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
matrika = [ [8, 2, 22, 97, 38, 15, 0, 40, 0, 75, 4, 5, 7, 78, 52, 12, 50, 77, 91, 8],
[49, 49, 99, 40, 17, 81, 18, 57, 60, 87, 17, 40, 98, 43, 69, 48, 4, 56, 62, 00],
[81, 49, 31, 73, 55, 79, 14, 29, 93, 71, 40, 67, 53, 88, 30, 3, 49, 13, 36, 65],
[52, 70, 95, 23, 4, 60, 11, 42, 69, 24, 68, 56, 1, 32, 56, 71, 37, 2, 36, 91],
[22, 31, 16, 71, 51, 67, 63, 89, 41, 92, 36, 54, 22, 40, 40, 28, 66, 33, 13, 80],
[24, 47, 32, 60, 99, 3, 45, 2, 44, 75, 33, 53, 78, 36, 84, 20, 35, 17, 12, 50],
[32, 98, 81, 28, 64, 23, 67, 10, 26, 38, 40, 67, 59, 54, 70, 66, 18, 38, 64, 70],
[67, 26, 20, 68, 2, 62, 12, 20, 95, 63, 94, 39, 63, 8, 40, 91, 66, 49, 94, 21],
[24, 55, 58, 5, 66, 73, 99, 26, 97, 17, 78, 78, 96, 83, 14, 88, 34, 89, 63, 72],
[21, 36, 23, 9, 75, 00, 76, 44, 20, 45, 35, 14, 00, 61, 33, 97, 34, 31, 33, 95],
[78, 17, 53, 28, 22, 75, 31, 67, 15, 94, 3, 80, 4, 62, 16, 14, 9, 53, 56, 92],
[16, 39, 5, 42, 96, 35, 31, 47, 55, 58, 88, 24, 00, 17, 54, 24, 36, 29, 85, 57],
[86, 56, 00, 48, 35, 71, 89, 7, 5, 44, 44, 37, 44, 60, 21, 58, 51, 54, 17, 58],
[19, 80, 81, 68, 5, 94, 47, 69, 28, 73, 92, 13, 86, 52, 17, 77, 4, 89, 55, 40],
[4, 52, 8, 83, 97, 35, 99, 16, 7, 97, 57, 32, 16, 26, 26, 79, 33, 27, 98, 66],
[88, 36, 68, 87, 57, 62, 20, 72, 3, 46, 33, 67, 46, 55, 12, 32, 63, 93, 53, 69],
[4, 42, 16, 73, 38, 25, 39, 11, 24, 94, 72, 18, 8, 46, 29, 32, 40, 62, 76, 36],
[20, 69, 36, 41, 72, 30, 23, 88, 34, 62, 99, 69, 82, 67, 59, 85, 74, 4, 36, 16],
[20, 73, 35, 29, 78, 31, 90, 1, 74, 31, 49, 71, 48, 86, 81, 16, 23, 57, 5, 54],
[1, 70, 54, 71, 83, 51, 54, 69, 16, 92, 33, 48, 61, 43, 52, 1, 89, 19, 67, 48]
]
def najvecji_produkt_stolpcev():
produkt = 0
for i in range(16):
for j in range(20):
produkt_stolpcev = matrika[i][j] * matrika[i + 1][j] * matrika[i + 2][j] * matrika[i + 3][j]
if produkt_stolpcev > produkt:
produkt = produkt_stolpcev
return produkt
def najvecji_produkt_vrstic():
produkt = 0
for i in range(20):
for j in range(16):
produkt_vrstic = matrika[i][j] * matrika[i][j + 1] * matrika[i][j + 2] * matrika[i][j + 3]
if produkt_vrstic > produkt:
produkt = produkt_vrstic
return produkt
def najvecji_produkt_diagonalcev():
produkt = 0
for i in range(16):
for j in range(16):
produkt_diagonalcev = matrika[i][j] * matrika[i + 1][j + 1] * matrika[i + 2][j + 2] * matrika[i + 3][j + 3]
if produkt_diagonalcev > produkt:
produkt = produkt_diagonalcev
return produkt
def inverzni_produkt_diagonalcev():
produkt = 0
for i in range(20):
for j in range(16):
inverzni_produkt_diagonalcev = matrika[i][j] * matrika[i - 1][j + 1] * matrika[i - 2][j + 2] * matrika[i - 3][j + 3]
if inverzni_produkt_diagonalcev > produkt:
produkt = inverzni_produkt_diagonalcev
return produkt
print(inverzni_produkt_diagonalcev())
print(max(najvecji_produkt_diagonalcev(), najvecji_produkt_stolpcev(), najvecji_produkt_vrstic(), inverzni_produkt_diagonalcev()))