-
Notifications
You must be signed in to change notification settings - Fork 225
/
analyze_classifier_coverage.py
executable file
·201 lines (162 loc) · 6.84 KB
/
analyze_classifier_coverage.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
#!/usr/bin/env python
import argparse, collections, functools, itertools, operator, re, string, time
import nltk.data
from nltk.classify.util import accuracy
from nltk.corpus import stopwords
from nltk.metrics import f_measure, precision, recall
from nltk.util import ngrams
from nltk_trainer import load_corpus_reader, pickle, simplify_wsj_tag
from nltk_trainer.classification import corpus, scoring
from nltk_trainer.classification.featx import bag_of_words
########################################
## command options & argument parsing ##
########################################
parser = argparse.ArgumentParser(description='Analyze a classifier on a classified corpus')
parser.add_argument('corpus', help='corpus name/path relative to an nltk_data directory')
parser.add_argument('--classifier', required=True,
help='pickled classifier name/path relative to an nltk_data directory')
parser.add_argument('--trace', default=1, type=int,
help='How much trace output you want, defaults to 1. 0 is no trace output.')
parser.add_argument('--metrics', action='store_true', default=False,
help='Use classified instances to determine classifier accuracy, precision & recall')
parser.add_argument('--speed', action='store_true', default=False,
help='Determine average instance classification speed.')
corpus_group = parser.add_argument_group('Corpus Reader Options')
corpus_group.add_argument('--reader',
default='nltk.corpus.reader.CategorizedPlaintextCorpusReader',
help='Full module path to a corpus reader class, such as %(default)s')
corpus_group.add_argument('--fileids', default=None,
help='Specify fileids to load from corpus')
corpus_group.add_argument('--cat_pattern', default='(.+)/.+',
help='''A regular expression pattern to identify categories based on file paths.
If cat_file is also given, this pattern is used to identify corpus file ids.
The default is '(.+)/+', which uses sub-directories as categories.''')
corpus_group.add_argument('--cat_file',
help='relative path to a file containing category listings')
corpus_group.add_argument('--delimiter', default=' ',
help='category delimiter for category file, defaults to space')
corpus_group.add_argument('--instances', default='paras',
choices=('sents', 'paras', 'files'),
help='''the group of words that represents a single training instance,
the default is to use entire files''')
corpus_group.add_argument('--fraction', default=1.0, type=float,
help='''The fraction of the corpus to use for testing coverage''')
feat_group = parser.add_argument_group('Feature Extraction',
'The default is to lowercase every word, strip punctuation, and use stopwords')
feat_group.add_argument('--ngrams', nargs='+', type=int,
help='use n-grams as features.')
feat_group.add_argument('--no-lowercase', action='store_true', default=False,
help="don't lowercase every word")
feat_group.add_argument('--filter-stopwords', default='no',
choices=['no']+stopwords.fileids(),
help='language stopwords to filter, defaults to "no" to keep stopwords')
feat_group.add_argument('--punctuation', action='store_true', default=False,
help="don't strip punctuation")
args = parser.parse_args()
###################
## corpus reader ##
###################
reader_args = []
reader_kwargs = {}
if args.cat_pattern:
reader_args.append(args.cat_pattern)
reader_kwargs['cat_pattern'] = re.compile(args.cat_pattern)
if args.cat_file:
reader_kwargs['cat_file'] = args.cat_file
if args.delimiter:
reader_kwargs['delimiter'] = args.delimiter
categorized_corpus = load_corpus_reader(args.corpus, args.reader, *reader_args, **reader_kwargs)
if args.metrics and not hasattr(categorized_corpus, 'categories'):
raise ValueError('%s does not support metrics' % args.corpus)
labels = categorized_corpus.categories()
########################
## text normalization ##
########################
if args.filter_stopwords == 'no':
stopset = set()
else:
stopset = set(stopwords.words(args.filter_stopwords))
if not args.punctuation:
stopset |= set(string.punctuation)
def norm_words(words):
if not args.no_lowercase:
words = [w.lower() for w in words]
if not args.punctuation:
words = [w.strip(string.punctuation) for w in words]
words = [w for w in words if w]
if stopset:
words = [w for w in words if w.lower() not in stopset]
# in case we modified words in a generator, ensure it's a list so we can add together
if not isinstance(words, list):
words = list(words)
if args.ngrams:
return functools.reduce(operator.add, [words if n == 1 else list(ngrams(words, n)) for n in args.ngrams])
else:
return words
#####################
## text extraction ##
#####################
if args.speed:
load_start = time.time()
try:
classifier = nltk.data.load(args.classifier)
except LookupError:
classifier = pickle.load(open(args.classifier))
if args.speed:
load_secs = time.time() - load_start
print('loading time: %dsecs' % load_secs)
if args.metrics:
label_instance_function = {
'sents': corpus.category_sent_words,
'paras': corpus.category_para_words,
'files': corpus.category_file_words
}
lif = label_instance_function[args.instances]
feats = []
test_feats = []
for label in labels:
texts = lif(categorized_corpus, label)
if args.instances == 'files':
# don't get list(texts) here since might have tons of files
stop = int(len(categorized_corpus.fileids())*args.fraction)
else:
texts = list(texts)
stop = int(len(texts)*args.fraction)
for t in itertools.islice(texts, stop):
feat = bag_of_words(norm_words(t))
feats.append(feat)
test_feats.append((feat, label))
print('accuracy:', accuracy(classifier, test_feats))
refsets, testsets = scoring.ref_test_sets(classifier, test_feats)
for label in labels:
ref = refsets[label]
test = testsets[label]
print('%s precision: %f' % (label, precision(ref, test) or 0))
print('%s recall: %f' % (label, recall(ref, test) or 0))
print('%s f-measure: %f' % (label, f_measure(ref, test) or 0))
else:
if args.instances == 'sents':
texts = categorized_corpus.sents()
total = len(texts)
elif args.instances == 'paras':
texts = (itertools.chain(*para) for para in categorized_corpus.paras())
total = len(categorized_corpus.paras())
elif args.instances == 'files':
texts = (categorized_corpus.words(fileids=[fid]) for fid in categorized_corpus.fileids())
total = len(categorized_corpus.fileids())
stop = int(total * args.fraction)
feats = (bag_of_words(norm_words(i)) for i in itertools.islice(texts, stop))
label_counts = collections.defaultdict(int)
if args.speed:
time_start = time.time()
for feat in feats:
label = classifier.classify(feat)
label_counts[label] += 1
if args.speed:
time_end = time.time()
for label in sorted(label_counts.keys()):
print(label, label_counts[label])
if args.speed:
secs = (time_end - time_start)
nfeats = sum(label_counts.values())
print('average time per classify: %dsecs / %d feats = %f ms/feat' % (secs, nfeats, (float(secs) / nfeats) * 1000))