forked from jupyter/jupyter.github.io
-
Notifications
You must be signed in to change notification settings - Fork 1
/
widgets.html
446 lines (442 loc) · 19.6 KB
/
widgets.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
---
layout: default
title: Widgets
permalink: /widgets
---
<link href="css/gallery.css" rel="stylesheet">
<link href="css/syntax.css" rel="stylesheet">
<script
src="https://cdnjs.cloudflare.com/ajax/libs/require.js/2.3.4/require.min.js"
integrity="sha256-Ae2Vz/4ePdIu6ZyI/5ZGsYnb+m0JlOmKPjt6XZ9JJkA="
crossorigin="anonymous">
</script>
<script src="https://unpkg.com/@jupyter-widgets/html-manager@*/dist/embed-amd.js" crossorigin="anonymous"></script>
<section>
<div class="header header-grey">
<div class="container">
<div class="row">
<div class="col-xs-12">
<h2>Interactive Widgets</h2>
<p>Jupyter widgets enable interactive data visualization in the Jupyter notebooks.</p>
</div>
</div>
</div>
</div>
</section>
<section>
<div class="section-white top-section-border">
<div class="container">
<img class="section-icon img-responsive" src="assets/widget.svg" alt="icon to represent multiple notebooks">
<h3 class="col-sm-12 section-header">Notebook Widgets</h3>
<p class="support-paragraph">Notebooks come alive when interactive widgets are used. Users can visualize and control changes in the data. Learning becomes an immersive, plus fun, experience. Researchers can easily see how changing inputs to a model impacts the results.</p>
</div>
</div>
</section>
<section>
<div class="container">
<div class="tabbable tabs-left">
<ul class="nav nav-tabs">
<li class="active">
<a href="#ipyleaflet" data-toggle="tab">
<p>ipyleaflet</p>
<p>Geo-spatial analytics</p>
</a>
</li>
<li>
<a href="#bqplot" data-toggle="tab">
<p>bqplot</p>
<p>2-D interactive data visualization</p>
</a>
</li>
<li>
<a href="#pythreejs" data-toggle="tab">
<p>pythreejs</p>
<p>3-D data visualization</p>
</a>
</li>
<li>
<a href="#ipyvolume" data-toggle="tab">
<p>ipyvolume</p>
<p>3-D plotting</p>
</a>
</li>
<li>
<a href="#nglview" data-toggle="tab">
<p>nglview</p>
<p>3-D interactive molecular visualization</p>
</a>
</li>
<li>
<a href="#k3d" data-toggle="tab" onclick="adjustK3D()">
<p>K3D-Jupyter</p>
<p>3-D data visualization</p>
</a>
</li>
<li>
<a href="#beakerx" data-toggle="tab" onclick="adjustBeakerXTable()">
<p>BeakerX</p>
<p>tables, plotting, forms</p>
</a>
</li>
<li>
<a href="#jupyter-gmaps" data-toggle="tab">
<p>jupyter-gmaps</p>
<p>Data visualization on Google Maps</p>
</a>
</li>
<li>
<a href="#cookiecutter" data-toggle="tab">
<p>cookiecutter</p>
<p>Template widget project</p>
</a>
</li>
<li>
<a href="#perspective" data-toggle="tab">
<p>perspective</p>
<p>Real-time Dataset Visualization</p>
</a>
</li>
</ul>
<div class="tab-content">
<div class="tab-pane active" id="ipyleaflet">
<div class="jupyter-widget-header">
<span class="gallery-title">ipyleaflet</span>
<span>
<a href="https://mybinder.org/v2/gh/jupyter-widgets/ipyleaflet/stable?filepath=examples">
<img class="img-scaling" src="assets/mybinder.svg" alt="Binder">
</a>
<a href="https://github.com/ellisonbg/ipyleaflet">
<img class="img-scaling" src="assets/github.svg" alt="GitHub">
</a>
</span>
</div>
<p>
A library for creating simple interactive maps with panning and
zooming, ipyleaflet supports annotations such as polygons,
markers, and more generally any geojson-encoded geographical
data structure.
</p>
<h3>Example</h3>
{% highlight python %}{% include_relative assets/ipyleaflet-example.py %}{% endhighlight %}
<script type="application/vnd.jupyter.widget-state+json">
{% include_relative assets/ipyleaflet-example.json %}
</script>
<script type="application/vnd.jupyter.widget-view+json">
{
"model_id": "5e5cc11723794d639e8d7a3f0951fdea"
}
</script>
<h3>Installation</h3>
With conda:
{% highlight bash %}conda install -c conda-forge ipyleaflet{% endhighlight %}
With pip:
{% highlight bash %}pip install ipyleaflet
jupyter nbextension enable --py --sys-prefix ipyleaflet{% endhighlight %}
If you are using JupyterLab, you will need to install the JupyterLab extension:
{% highlight bash %}jupyter labextension install @jupyter-widgets/jupyterlab-manager jupyter-leaflet{% endhighlight %}
</div>
<div class="tab-pane" id="nglview">
<div class="jupyter-widget-header">
<span class="gallery-title">nglview</span>
</div>
<p>
A Jupyter widget to interactively view molecular structures and trajectories.
</p>
<h3>Example</h3>
{% highlight python %}{% include_relative assets/nglview-example.py %}{% endhighlight %}
<script type="application/vnd.jupyter.widget-state+json">
{% include_relative assets/nglview-example.json %}
</script>
<script type="application/vnd.jupyter.widget-view+json">
{
"model_id": "8a1512fb32fe47ee904e1ed8aa498e10"
}
</script>
<h3>Installation</h3>
With conda:
{% highlight bash %}conda install -c bioconda nglview{% endhighlight %}
With pip:
{% highlight bash %}pip install nglview
jupyter nbextension enable --py --sys-prefix nglview{% endhighlight %}
</div>
<div class="tab-pane" id="k3d">
<div class="jupyter-widget-header">
<span class="gallery-title">K3D-Jupyter</span>
<span>
<a href="https://github.com/K3D-tools/K3D-jupyter">
<img class="img-scaling" src="assets/github.svg" alt="GitHub">
</a>
</span>
</div>
<p>
<a href="https://github.com/K3D-tools/K3D-jupyter">K3D</a> lets you create 3D plots backed by WebGL with
high-level API (surfaces, isosurfaces, voxels, mesh, cloud points, vtk objects, volume renderer,
colormaps, etc). The primary aim of K3D-jupyter is to be easy for use as stand alone package like
matplotlib, but also to allow interoperation with existing libraries as VTK. The power of ipywidgets
makes it also a fast and performant visualisation tool for HPC computing e.g. fluid dynamics.
</p>
<p>
Showcase gallery: <a href="https://k3d-jupyter.readthedocs.io/en/latest/showcase/index.html">https://k3d-jupyter.readthedocs.io/en/latest/showcase/index.html</a>.
</p>
<h3>Example</h3>
{% highlight python %}{% include_relative assets/k3d-example.py %}{% endhighlight %}
<script type="application/vnd.jupyter.widget-state+json">
{% include_relative assets/k3d-example.json %}
</script>
<script type="application/vnd.jupyter.widget-view+json">
{
"model_id": "d3a24bac28644484b2aad2bdf34f31bf"
}
</script>
<script type="application/javascript">
function adjustK3D() {
setTimeout(function() {
window.dispatchEvent && window.dispatchEvent(new Event('resize'));
});
}
</script>
<h3>Installation</h3>
With pip:
{% highlight bash %}pip install k3d
jupyter nbextension enable --py --sys-prefix k3d{% endhighlight %}
If you are using JupyterLab, you will need to install the JupyterLab extension:
{% highlight bash %}jupyter labextension install @jupyter-widgets/jupyterlab-manager k3d{% endhighlight %}
</div>
<div class="tab-pane" id="bqplot">
<div class="jupyter-widget-header">
<span class="gallery-title">bqplot</span>
<span>
<a href="https://mybinder.org/v2/gh/bloomberg/bqplot/stable?filepath=examples">
<img class="img-scaling" src="assets/mybinder.svg" alt="Binder">
</a>
<a href="https://github.com/bloomberg/bqplot">
<img class="img-scaling" src="assets/github.svg" alt="GitHub">
</a>
</span>
</div>
<p>
A 2-D interactive data visualization library implementing the
constructs of the grammar of graphics, bqplot provides a simple
API for creating custom user interactions.
</p>
<h3>Example</h3>
{% highlight python %}{% include_relative assets/bqplot-example.py %}{% endhighlight %}
<script type="application/vnd.jupyter.widget-state+json">
{% include_relative assets/bqplot-example.json %}
</script>
<script type="application/vnd.jupyter.widget-view+json">
{
"model_id": "10e4ea0790e94bcba5d41df5f3ce007c"
}
</script>
<h3>Installation</h3>
With conda:
{% highlight bash %}conda install -c conda-forge bqplot{% endhighlight %}
With pip:
{% highlight bash %}pip install bqplot
jupyter nbextension enable --py --sys-prefix bqplot{% endhighlight %}
If you are using JupyterLab, you will need to install the JupyterLab extension:
{% highlight bash %}jupyter labextension install @jupyter-widgets/jupyterlab-manager bqplot{% endhighlight %}
</div>
<div class="tab-pane" id="pythreejs">
<div class="jupyter-widget-header">
<span class="gallery-title">pythreejs</span>
<span>
<!--
<a href="https://mybinder.org/repo/jupyter-widgets/pythreejs/examples">
<img class="img-scaling" src="assets/mybinder.svg" alt="Binder">
</a>
-->
<a href="https://github.com/jupyter-widgets/pythreejs">
<img class="img-scaling" src="assets/github.svg" alt="GitHub">
</a>
</span>
</div>
<p>
A 3-D visualization library enabling GPU-accelerated computer
graphics in Jupyter.
</p>
<h3>Example</h3>
{% highlight python %}{% include_relative assets/pythreejs-example.py %}{% endhighlight %}
<script type="application/vnd.jupyter.widget-state+json">
{% include_relative assets/pythreejs-example.json %}
</script>
<script type="application/vnd.jupyter.widget-view+json">
{
"model_id": "d6a0b86fa7434395ac0aca0659f35274"
}
</script>
<h3>Installation</h3>
With conda:
{% highlight bash %}conda install -c conda-forge pythreejs{% endhighlight %}
With pip:
{% highlight bash %}pip install pythreejs
jupyter nbextension enable --py --sys-prefix pythreejs{% endhighlight %}
If you are using JupyterLab, you will need to install the JupyterLab extension:
{% highlight bash %}jupyter labextension install @jupyter-widgets/jupyterlab-manager jupyter-threejs{% endhighlight %}
</div>
<div class="tab-pane" id="ipyvolume">
<div class="jupyter-widget-header">
<span class="gallery-title">ipyvolume</span>
<span>
<a href="https://mybinder.org/v2/gh/maartenbreddels/ipyvolume/master?filepath=notebooks/simple.ipynb">
<img class="img-scaling" src="assets/mybinder.svg" alt="Binder">
</a>
<a href="https://github.com/maartenbreddels/ipyvolume">
<img class="img-scaling" src="assets/github.svg" alt="GitHub">
</a>
</span>
</div>
<p>
3-D plotting for Python in the Jupyter notebook based on IPython widgets using WebGL.
</p>
<h3>Example</h3>
{% highlight python %}{% include_relative assets/ipyvolume-example.py %}{% endhighlight %}
<script type="application/vnd.jupyter.widget-state+json">
{% include_relative assets/ipyvolume-example.json %}
</script>
<script type="application/vnd.jupyter.widget-view+json">
{
"model_id": "3a74fe1c2fc14b30a012b5754cd55af7"
}
</script>
<h3>Installation</h3>
With conda:
{% highlight bash %}conda install -c conda-forge ipyvolume{% endhighlight %}
With pip:
{% highlight bash %}pip install ipyvolume
jupyter nbextension enable --py --sys-prefix ipyvolume{% endhighlight %}
If you are using JupyterLab, you will need to install the JupyterLab extension:
{% highlight bash %}jupyter labextension install @jupyter-widgets/jupyterlab-manager jupyter-threejs ipyvolume{% endhighlight %}
</div>
<div class="tab-pane" id="beakerx">
<div class="jupyter-widget-header">
<span class="gallery-title">BeakerX</span>
<span>
<a href="https://github.com/twosigma/beakerx">
<img class="img-scaling" src="assets/github.svg" alt="GitHub">
</a>
</span>
</div>
<p>
<a href="https://BeakerX.com">BeakerX</a> includes widgets
for interactive tables, plots, forms, Apache Spark, and more.
The table widget automatically recognizes pandas dataframes
and allows you to search, sort, drag, filter, format,
select, graph, hide, pin, and export to CSV or
clipboard. This makes connecting to spreadsheets quick and
easy.
</p>
<p>
The table widget, shown below, is so fast because it's implemented with the PhosphorJS Data Grid,
part of Jupyter Lab's architecture.
</p>
<h3>Example</h3>
{% highlight python %}{% include_relative assets/beakerx-example.py %}{% endhighlight %}
<script type="application/vnd.jupyter.widget-state+json">
{% include_relative assets/beakerx-example.json %}
</script>
<script type="application/vnd.jupyter.widget-view+json">
{
"model_id": "d6371237-9b40-427e-9833-71cb25330855"
}
</script>
<script type="application/javascript">
function adjustBeakerXTable() {
setTimeout(function() {
window.dispatchEvent && window.dispatchEvent(new Event('resize'));
});
}
</script>
<h3>Installation</h3>
With conda:
{% highlight bash %}conda install -c conda-forge beakerx ipywidgets{% endhighlight %}
With pip:
{% highlight bash %}pip install beakerx
beakerx-install{% endhighlight %}
</div>
<div class="tab-pane" id="jupyter-gmaps">
<div class="jupyter-widget-header">
<span class="gallery-title">jupyter-gmaps</span>
<span>
<a href="https://github.com/pbugnion/gmaps">
<img class="img-scaling" src="assets/github.svg" alt="GitHub">
</a>
</span>
</div>
<p>
<a href="https://jupyter-gmaps.readthedocs.io">Gmaps</a> lets you
embed interactive Google maps in Jupyter notebooks. Visualize
your data with heatmaps, GeoJSON, symbols and markers, or plot
directions, traffic, or cycle routes. Let users draw on the map
and capture the coordinates of the markers or polygons they are
placing to build interactive applications entirely in Python.
</p>
<h3>Example</h3>
{% highlight python %}{% include_relative assets/jupyter-gmaps-example.py %}{% endhighlight %}
<script type="application/vnd.jupyter.widget-state+json">
{% include_relative assets/jupyter-gmaps-example.json %}
</script>
<script type="application/vnd.jupyter.widget-view+json">
{
"model_id": "c3031eeeee3348ddb94c2f472822f829"
}
</script>
<h3>Installation</h3>
With conda:
{% highlight bash %}conda install -c conda-forge gmaps{% endhighlight %}
With pip:
{% highlight bash %}pip install gmaps
jupyter nbextension enable --py --sys-prefix gmaps{% endhighlight %}
If you are using JupyterLab, you will need to install the JupyterLab extension:
{% highlight bash %}jupyter labextension install @jupyter-widgets/jupyterlab-manager{% endhighlight %}
</div>
<div class="tab-pane" id="cookiecutter">
<div class="jupyter-widget-header">
<span class="gallery-title">widget cookiecutters</span>
<span>
<a href="https://github.com/jupyter-widgets/widget-cookiecutter">
<img class="img-scaling" src="assets/github.svg" alt="GitHub">
</a>
<a href="https://github.com/jupyter-widgets/widget-ts-cookiecutter">
<img class="img-scaling" src="assets/github.svg" alt="GitHub">
</a>
</span>
</div>
<p>
The Jupyter widget framework is extensible and enables developers to create custom
widget libraries and bindings for visualization libraries of the JavaScript and TypeScript ecosystem.
</p>
<p>
The <code>cookiecutter</code> projects help widget authors get up to speed with the
packaging and distribution of Jupyter interactive widgets, in
<a href="https://github.com/jupyter-widgets/widget-cookiecutter">JavaScript</a> and
<a href="https://github.com/jupyter-widgets/widget-ts-cookiecutter">TypeScript</a>.
</p>
<p>
They produce a base project for a Jupyter interactive widget library following the current best practices.
An implementation for a placeholder "Hello World" widget is provided. Following these practices will
help make your custom widgets work in static web pages (like the examples of this page) and be compatible
with future versions of Jupyter.
</p>
</div>
<div class="tab-pane" id="perspective">
<div class="jupyter-widget-header">
<span class="gallery-title">perspective</span>
<span>
<a href="https://github.com/finos/perspective">
<img class="img-scaling" src="assets/perspective.gif" alt="GitHub">
</a>
</span>
</div>
<p>
Perspective is an interactive visualization component for large, real-time datasets. Originally developed for J.P. Morgan's trading business, Perspective makes it simple to build real-time & user configurable analytics entirely in the browser, or in concert with Python and/or Jupyterlab.
</p>
<p>
<code>Perspective</code> can be used to create reports, dashboards, notebooks and applications, with static data or streaming updates via Apache Arrow.</a>.
</p>
</div>
</div>
</div>
</div>
</section>