forked from ivh/PyGalKin
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtool.py
921 lines (733 loc) · 26.4 KB
/
tool.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
"""
tool.py
general toolbox
"""
from PyGalKin import *
# SHORTCUTS
tab='\t'
nl='\n'
bs='\\'
sp=' '
null='\0'
# CONSTANTS
#
# units:
# velocity: km/s
# wavelength: Angstrom
lambHA=N.array([6562.7797852000003],'Float32')
sol=N.array([299792.458],'Float32')
c=sol
H0=N.array([70.],'Float32')
Grav=N.array([6.6726E-11*1.989E30/1000**3],'Float32') ### in solar masses and km
pc=N.array([3.086E13],'Float32') ## in km
## Roberts values
## [S III] 9068.8
## Pa 10 9014.910
## Pa 11 8862.783
## Pa 12 8750.473
## Pa 13 8665.018
## Pa 14 8598.392
## Pa 15 8545.382
## Pa 16 8502.483
## Pa 17 8467.253
## O I 8446.455
## Pa 18 8437.955
# Paschen wavelengths
# Pa19 18 ....
Paschen=N.array([8413.317, 8437.955, 8467.253, 8502.483, 8545.382, 8598.392, 8665.018, 8750.473, 8862.783, 9014.910, 9229.014])
def PaLamb(number): return Paschen[19-number]
#PschenStrengths 9/10 10/10 11/10 12/10 ... 19/10
PaschStren=N.array([1.3812, 1.0, 0.7830, 0.6131, 0.4801, 0.3759, 0.2943, 0.2477, 0.2084, 0.1754, 0.1476])
PaschStren=PaschStren[::-1]
# SIII OI ClII FeII
EmissionLines=N.array([9068.6,8446,8579,8617])
CaT=N.array([8498., 8542., 8662.])
Sulfur=9068.87
#
# BASE CLASSES
#
class numpdict(N.ndarray):
def __new__(subtype, data, p=None, dtype=None, copy=False):
# Make sure we are working with an array, and copy the data if requested
subarr = N.array(data, dtype=dtype, copy=copy)
# Transform 'subarr' from an ndarray to our new subclass.
subarr = subarr.view(subtype)
# Use the specified 'p' parameter if given
if p is not None:
subarr.p = p
# Otherwise, use data's p attribute if it exists
elif hasattr(data, 'p'):
subarr.p = data.p
# Finally, we must return the newly created object:
return subarr
def __array_finalize__(self,obj):
if not hasattr(self, 'p'):
self.p = getattr(obj, 'p', {})
def __repr__(self):
desc="""array(data=%(data)s,p=%(p)s)"""
return desc % {'data': str(self), 'p':self.p }
class spec(numpdict):
def __new__(subtype, data, p=None, dtype=None, copy=False):
subarr=numpdict.__new__(subtype, data, p, dtype, copy)
if p.has_key('l0'):
subarr.l0=p['l0']
if p.has_key('dl'):
subarr.dl=p['dl']
subarr.wave=N.arange(subarr.shape[-1])*subarr.dl + subarr.l0
return subarr
# physical functions
def dis(arr1,arr2):
""" returns the distance between two points"""
arr=(arr2-arr1)**2
return N.sqrt(arr.sum())
def app2abs(dist,m):
""" convert apparent to absolute magnitudes, takes distance in Mpc"""
return (-5*N.log10(dist*1000000.))+5+m
def balmer(m):
""" caculate m'th balmer line"""
return hydrogen(2,m+2)
def hydrogen(n,m):
""" calculate rydberg wavelengths of hydrogen"""
m,n=float(m),float(n)
return (n**2 * m**2 / (m**2 - n**2)) / 1.0967758E7
def massKepler(r,v):
""" returns the mass from keplers law: M(<r)=r*(v**2)*G
input in pc and km/s
mind the factors 1/2 !!
"""
return ((v/2)**2)*(r/2)*pc/Grav
def lamb2vel(l,rest=lambHA):
""" converts a wavelength in A wrt HA into a radial velocity """
return ((l/rest)-1)*sol
def flux2mag(f):
return -2.5*(N.log10(f))
def mag2flux(m):
return 10**(m/2.5)
def z2vel(z):
return z*sol
def vel2z(v):
return v/sol
def lamb2freq(l):
return 1.0E3*sol/l
def freq2lamb(f):
return 1.0E3*sol/f
def Ghz2micron(f):
return freq2lamb(f)*1.0E-3
def micron2Ghz(l):
return lamb2freq(l)*1.0E-3
def arcsec2rad(arcsec):
return radians(arcsec/3600.0)
def arcsec2kpc(arcsec=1.0,vsys=1000):
return vsys/H0*1E3*arcsec2rad(arcsec)
def kpc2arcsec(kpc=1.0,vsys=1000):
return kpc/arcsec2kpc(vsys=vsys)
def hubbledist(v):
return v/H0*1000
def units(have,want,number=''):
"""
uses the external procram "units" to convert units :-)
"""
out=commands.getoutput('units -q -s ' + str(number) + have + ' ' + want + '| head -1 | cut -d " " -f2')
return N.array([float(out)])
def lamb2pix(data,Lamb0,Step):
if type(data) == type(1) or type(data) == type(1.0):
return int(N.around((data-Lamb0)/Step).astype('Int32'))
else: return N.around((data-Lamb0)/Step).astype('Int32')
def dlamb2vel(data,lamb0):
return data/lamb0*c
def pix2lamb(data,Lamb0,Step):
return (data*Step)+Lamb0
def pix2vel(data,lamb0,Step):
return z2vel(((data*Step)+lamb0 )/ lamb0)
def pix2relvel(data,lamb0,Step):
return data*Step/lamb0*c
def vel2lamb(data,lamb0):
return vel2z(data) * lamb0
def vel2z(vel):
return ((vel/c)+1)
def z2vel(z):
return (z-1)*c
def vel2dis(v):
return v/H0
def scalefromvarc(arcsecperpix,v):
""" returns pc/pix"""
return arcsecperpix/3600/360*2*pi * vel2dis(v)*1E6
def isconstant(data):
return S.std(data)==0.0
def relz(v):
return sqrt((1+(v/c))/(1-(v/c)))-1
# Handy general functions
def getXY(data):
i=N.indices((data.shape[0],data.shape[1]))
return N.ravel(i[0]),N.ravel(i[1])
def shift(vec,i):
""" Shift a vector.
Usage: new_vec = shift(vec, i)
vec: The vector to be shifted
i: The steps to shift the vector with
"""
n= vec.size
i %= n
return N.concatenate((vec[n-i:n],vec[0:n-i]))
def calcpeak(inarr,n):
""" calculate the barycenter-velociy of the n highest pixels"""
sorted,args=N.sort(inarr),N.argsort(inarr)
erg = N.sum(sorted[-n:] * args[-n:]) / N.sum(sorted[-n:])
return erg
def firstmoment(inarr):
""" calculates the 1st moment from an array """
return N.sum(N.arange(inarr.size)*inarr)/N.sum(inarr)
def secondmoment(inarr):
""" calculates the 2nd moment from an array xx"""
return N.sqrt(N.abs(N.sum((N.arange(inarr.size)-firstmoment(inarr))**2*inarr)/N.sum(inarr)))
def fwhm(inarr):
""" returns the full widh at half maximum"""
return 2.3548200450309493*secondmoment(inarr)
def doforeachpoint(data, function, *args, **keywords):
"""Apply a function (whcih takes a 1d-vector) to all values of x and
y of a 3D-matrix. The output will have a z-dimension equal to the
length of the output from the 'function'.
Usage: new_arr = doforeachpoint(arr, function, arguments)
data: The 3D-array input array
"""
data=data.copy()
x,y,z=data.shape
xy=x*y
data.shape=(xy,z)
for i in N.arange(xy):
tmp=function(data[i], *args, **keywords)
if type(tmp)==type(()): print 'cannot handle tuples yet'; return -1
elif not hasattr(tmp,'__len__'): tmp=N.array([tmp]);
if i == 0:
erg=N.zeros((xy,len(tmp)),dtype='float64')
erg[i,:]=tmp
else: erg[i,:]=tmp
erg.shape=(x,y,-1)
if erg.shape[2]==1: erg.shape=(x,y)
return erg
def selective_sum(data,range='cat',Z=1.002912,axis=2):
if range=='cat': zmin,zmax=lamb2pix(N.array([8470,8700])*Z,Lamb0,Step)
else: zmin,zmax=0,data.shape[-1]
print data.shape
return N.sum(data[:,:,zmin:zmax],axis)
selsum=selective_sum
def selective_average(data,range='cat',Z=1.002912,axis=2):
if range=='cat': zmin,zmax=lamb2pix(N.array([8470,8700])*Z,Lamb0,Step)
else: zmin,zmax=0,data.shape[-1]
if len(data.shape)==3: return N.average(data[:,:,zmin:zmax],axis)
elif len(data.shape)==1: return N.average(data[zmin:zmax])
selav=selective_average
def posvel(vf,dyncen,pa):
vec=N.array([-N.sin(radians(pa)),N.cos(radians(pa))])
x,y=N.indices(vf.shape)
pos=N.inner(vec,N.array([dyncen[0]-x,dyncen[1]-y]))
vel=N.flatten(vf)
# pos=N.flatten(N.zeros_like(vf,'Float32'))
# vel=N.zeros(0,'Float32')
# for i in N.arange(vf.nx()):
# for j in N.arange(vf.ny()):
# if self[i,j] != 0 :
# pos[i,j]=N.innerproduct(vec,N.array([dyncen[0]-i,dyncen[1]-j]))
# pos[]=N.concatenate((pos, ))
# vel=N.concatenate((vel, self[i,j]))
return pos,vel
def m2masks(angmap,pa,wedge):
pa2=pa+pi
mask1=angmap < pa-wedge
if pa-wedge<0:
mask1=mask_or(mask1, (angmap < 2*pi+pa-wedge) & (angmap>pi))
mask1=mask_or(mask1, (angmap > pa+wedge) & (angmap<pi))
else:
mask1=mask_or(mask1, angmap > pa+wedge)
mask2=angmap > pa2+wedge
if pa2+wedge>2*pi:
mask2=mask_or(mask2, (angmap > pa2-2*pi+wedge) & (angmap<pi))
mask2=mask_or(mask2, (angmap < pa2-wedge) & (angmap>pi))
else:
mask2=mask_or(mask2, angmap < pa2-wedge)
return mask1,mask2
def Angmap(x,y,pa):
angmap=N.arctan(x/y)*(-1)
angmap=N.where(y<0.0,angmap+pi,angmap)
angmap=N.where(angmap<0.0,angmap+(2*pi),angmap)
angmap-=pa
angmap=N.where(angmap<0.0,angmap+(2*pi),angmap)
angmap=N.where(N.isnan(angmap),pi,angmap)
return angmap
def Dismap(x,y,pa,incl):
vec=N.array([-N.sin(pa),N.cos(pa)])
perp=N.array([N.cos(pa),N.sin(pa)])
perp/=N.cos(incl)
d1=(x*vec[0])+(y*vec[1])
d2=(x*perp[0])+(y*perp[1])
return N.sqrt(d1**2 + d2**2)
def binRC(rin,vin,rbin=1.0):
n=N.ceil(rin.max()/rbin)
R=(N.arange(n))*rbin
V=N.zeros_like(R)
S=N.zeros_like(R)
for i,r in enumerate(R):
vt=masked_where((rin<r)|(rin>r+rbin),vin)
V[i]=vt.mean()
S[i]=vt.std()
return R+(rbin/2.0),V,S
def rotcur(vf,cen,pa,wedge,incl):
""" calculate a rotation curve from a VF"""
while pa < 0.0: pa+=180.0
while pa >= 180.0: pa-=180.0
pa,wedge,incl=map(N.radians,(pa,wedge,incl))
x,y=getXY(vf)
x.shape=vf.shape
y.shape=vf.shape
x=x.astype('f') - cen[0]
y=y.astype('f') - cen[1]
angmap=Angmap(x,y,pa)
dismap=Dismap(x,y,pa,incl)
vf=vf.copy()
vf-=vf[cen[0],cen[1]]
vf=vf/N.abs(N.cos(angmap))/N.sin(incl)
#mask1,mask2=m2masks(angmap,pa,wedge)
mask1=(angmap>wedge) & (angmap<2*pi-wedge)
mask2=mask_or(angmap<pi-wedge,angmap>pi+wedge,copy=True)
r1=masked_array(dismap,mask1).flatten()
r2=masked_array(dismap,mask2).flatten()
v1=masked_array(vf,mask1).flatten()
v2=masked_array(vf,mask2).flatten()
#return vf,masked_array(N.cos(angmap),mask1&mask2)
return r1,r2,v1,v2
#########################
#### Cross correlation
#########################
def xcorr(galaxy,star,filtgal=False,filtstar=None,range=N.array([700,1300]),baryN=15,plot=False,offset=50):
Lamb0,Step,contSubtr=A.Lamb0,A.Step,A.contSubtr
wavecal=pix2lamb(range,Lamb0,Step)
if filtstar != None: gaussian_filter1d(star,filtstar)
origshape=galaxy.shape
galaxy=galaxy.copy()
star=star.copy()
star-=contSubtr(star,order=1)
star=star[range[0]:range[1]]
star,x=log_rebin(star,wavecal)
if len(galaxy.shape) == 3:
galaxy.shape=(origshape[0]*origshape[1],origshape[2])
pos=N.zeros(galaxy.shape[0],'Float32')
wid=N.zeros(galaxy.shape[0],'Float32')
bary=N.zeros(galaxy.shape[0],'Float32')
secmom=N.zeros(galaxy.shape[0],'Float32')
cont=N.zeros(galaxy.shape[0],'Float32')
amp=N.zeros(galaxy.shape[0],'Float32')
h3=N.zeros(galaxy.shape[0],'Float32')
h4=N.zeros(galaxy.shape[0],'Float32')
fitl=(len(star)/2)-80+offset
fitr=(len(star)/2)+80+offset
print fitl,fitr
for i in N.arange(len(pos)):
if isconstant(galaxy[i]): continue
gal=galaxy[i,range[0]:range[1]]
gal-=contSubtr(gal,order=1)
gal,x1=log_rebin(gal,wavecal)
print x1[1]-x1[0]
if filtgal:
gal.ndim=1
gal=bandfilt(gal)
xc=Sig.correlate(gal,star,'same')
if plot: P.clf(); P.plot(xc); sleep(3);P.clf()
if plot: sleep(4);P.clf()
xc=xc[fitl:fitr]
fit=G.fitgaussh34(xc+1.0,err=1/xc,plot=plot,prin=True)
#fit=fit2gauss(xc+1.0,plot=True)
if fit == -1: print "somethings wrong!"
else:
cont[i],pos[i],amp[i],wid[i],h3[i],h4[i]=fit.params
#cont,pos[i],amp,wid[i],x4,x5,x6=fit.params
bary[i]=calcpeak(xc,baryN)
xc=N.array(xc)
secmom[i]=secondmoment(xc)
if plot: P.plot([pos[i],bary[i]],[amp[i]+cont[i],amp[i]+cont[i]],'ro')
P.draw()
pos=pos-((fitr-fitl)/2.0)+offset
bary=bary-((fitr-fitl)/2.0)+offset
#vel=((exp(x[0])/exp(x[diff]))-1)*3E5
if len(origshape) == 3:
pos.shape=(origshape[0],origshape[1])
wid.shape=(origshape[0],origshape[1])
bary.shape=(origshape[0],origshape[1])
secmom.shape=(origshape[0],origshape[1])
cont.shape=(origshape[0],origshape[1])
amp.shape=(origshape[0],origshape[1])
h3.shape=(origshape[0],origshape[1])
h4.shape=(origshape[0],origshape[1])
return pos,bary,wid,secmom,cont,amp,h3,h4
def offset2vel(data,calib=4.93750657338e-05):
"""I *think* this is simply to apply a previously determined calibration"""
return (N.exp(data*calib)-1) * c
def sigmacal(star,plot=False):
sigmain=N.arange(0,20,1.0,'Float32')
sigmaout=sigmain.copy()*0.0
wavecal=[8000,8000+(Step*len(sigmain))]
star,x=log_rebin(star,wavecal)
for i in N.arange(len(sigmain)):
st,x1=log_rebin(gaussian_filter1d(star,sigmain[i]),wavecal)
xc=Sig.correlate(star,st,'same')
xc=xc[280:-280]
if plot: P.clf()
fit=fitgauss(xc+1.0,plot=plot)
print fit.params[3]
sigmaout[i]=fit.params[3]
return dlamb2vel(sigmain*Step,CaT[1]),sigmaout
def applysigcal(data,cal):
mi=cal.x.min()
ma=cal.x.max()
dat=N.where(data <= ma, data, data*0.0 + mi)
dat=N.where(dat >= mi, dat, data*0.0 +mi)
cadat=cal(dat.flat)
cadat.shape=dat.shape
return cadat
#########################
#### IDL Wrappers
#########################
def log_rebin(spec,lamRange=None):
""" wrapper for IDL's log_rebin"""
# make a new IDL session
idl=IDL()
# give the variables to IDL
idl.put('spec',spec)
idl.put('lamRange',lamRange)
#construct the IDL command and execute it
idlcommand='LOG_REBIN, lamRange, spec, specNew, logLam, VELSCALE=velScale'
idl.eval(idlcommand)
# get the result
specNew=N.array(idl.get('specNew'))
logLam=N.array(idl.get('logLam'))
return specNew,logLam
def ppxf():
""" wrapper for ppxf in IDL"""
#PPXF, star, galaxy, noise, velScale, start, sol, $
#; BESTFIT=bestFit, BIAS=bias, /CLEAN, DEGREE=degree, ERROR=error, $
#; GOODPIXELS=goodPixels, MDEGREE=mdegree, MOMENTS=moments, $
#; /OVERSAMPLE, /PLOT, /QUIET, VSYST=vsyst, WEIGHTS=weights
def voronoi2dbinning(data,Noise=False,targetSN=20,plot=True,quiet=True,returnall=False):
""" wrapper to do voronoi binning
CAREFUL: treats 2d-data as two spatial dimensions
"""
origshape=data.shape
if len(data.shape) == 3 and Noise==False:
X,Y=getXY(data)
data.shape=(origshape[0]*origshape[1],origshape[2])
Signal=data.mean(axis=1)
Noise=data.std(axis=1)
data.shape=origshape
elif len(data.shape) == 3 and Noise!=False:
X,Y=getXY(data)
data.shape=(origshape[0]*origshape[1],origshape[2])
Signal=data.mean(axis=1)
Noise=N.resize(Noise,Signal.shape)
data.shape=origshape
elif len(data.shape) == 2:
Signal=N.ravel(data)
if len(Noise) != len(Signal): Noise=N.resize(Noise,Signal.shape)
X,Y=getXY(data)
elif len(data.shape) == 1 and Noise!=False:
Signal=data
if len(Noise) != len(Signal): Noise=N.resize(Noise,Signal.shape)
X,Y=getXY(data)
else:
print "must have a noise level for non-spectral data"
return -1
#print Signal.shape,Noise.shape,X.shape,Y.shape
print max(Signal),S.average(Noise),X[N.argmax(Signal)],Y[N.argmax(Signal)]
# make a new IDL session
idl=IDL()
# give the variables to IDL
idl.put('X',X)
idl.put('Y',Y)
idl.put('Signal',Signal)
idl.put('Noise',Noise)
idl.put('targetSN',targetSN)
#construct the IDL command
idlcommand='VORONOI_2D_BINNING, X, Y, Signal, Noise, targetSN, BinNumber, xBin, yBin, xBar, yBar, SN, nPixels'
if plot: idlcommand+=', /PLOT'
if quiet: idlcommand+=', /QUIET'
# run the command and save the plot
try:
idl.eval('set_plot,\'ps\'')
idl.eval(idlcommand)
idl.eval('device,/close')
except:
print "something went wron while running idl"
return -1
# collect the output
BinNumber=N.array(idl.get('BinNumber'))
xBin=N.array(idl.get('xBin'))
yBin=N.array(idl.get('yBin'))
xBar=N.array(idl.get('xBar'))
yBar=N.array(idl.get('yBar'))
SN=N.array(idl.get('SN'))
nPixels=N.array(idl.get('nPixels'))
if returnall: return BinNumber, xBin, yBin, xBar, yBar, SN, nPixels
else: return BinNumber
def avbins2(data,BinNumber):
""" average the data accordng to BinNumber, but return a 1d-vector instead of the same shape as data"""
n=BinNumber.max()+1
data=data.flatten()
result=N.zeros(n,dtype='Float32')
num=N.zeros(n,dtype='Int32')
sig=N.zeros(n,dtype='Float32')
for i in N.arange(n):
result[i]=N.sum(N.where(BinNumber==i,data,0.0))
num[i]=N.sum(N.where(BinNumber==i,1,0))
sig[i]=masked_where(BinNumber!=i,data).std()
return result/num,sig,num
def avbins3(data,BinNumber):
""" average the data accordng to BinNumber, but return a 1d-vector instead of the same shape as data"""
n=BinNumber.max()+1
os=data.shape
data=data.copy()
data.shape=(os[0]*os[1],os[2])
result=N.zeros((n,os[2]),dtype='Float32')
num=N.zeros(n,dtype='Int32')
for i in N.arange(n):
num[i]=N.sum(N.where(BinNumber==i,1,0))
result[i,:]=N.sum(data[N.where(BinNumber==i),:],axis=1) / num[i]
return result,num
def spreadbins2(data,BinNumber,shape=None):
if not shape: shape=(N.sqrt(BinNumber.shape).astype('i'),N.sqrt(BinNumber.shape).astype('i'))
result=N.zeros(shape,dtype='Float32').flatten()
for i,bin in enumerate(BinNumber):
result[i]=data[bin]
result.shape=shape
return result
def average_bins3(data,BinNumber):
"""BinNumber is of length Npix and contains for each pix the bin-number that it belongs to"""
orig=data.copy()
Nbins=max(BinNumber)+1
data=N.reshape(data,(orig.shape[0]*orig.shape[1],orig.shape[2]))
BinValues=N.zeros((Nbins,orig.shape[2]),'Float32')
counter=N.zeros((Nbins,))
for i in N.arange(len(BinNumber)):
BinValues[BinNumber[i],:] += data[i,:]
counter[BinNumber[i]] += 1
for i in N.arange(len(BinNumber)):
data[i,:]=BinValues[BinNumber[i]] / counter[BinNumber[i]]
data.shape=orig.shape
return data
def average_bins2(data,BinNumber,prin=False):
"""BinNumber is of length Npix and contains for each pix the bin-number that it belongs to"""
origshape=data.shape
data=N.ravel(data.copy())
sig=N.zeros_like(data)
num=N.zeros_like(data)
BinValues,BinSigmas,BinNum=binvalues(data,BinNumber)
for i in N.arange(len(BinNumber)):
data[i]=BinValues[BinNumber[i]]
sig[i]=BinSigmas[BinNumber[i]]
num[i]=BinNum[BinNumber[i]]
data.shape=origshape
sig.shape=origshape
num.shape=origshape
return data,sig,num
def binvalues(data,BinNumber):
Nbins=max(BinNumber)+1
BinValues=[N.array([])]*Nbins
#print Nbins, BinValues.shape,data.shape
for i,bin in enumerate(BinNumber):
BinValues[bin]= N.hstack((BinValues[bin],data[i]))
return map(N.mean,BinValues),map(N.std,BinValues),map(N.size,BinValues)
def rad_profile(data,xbin,ybin,xcen,ycen,BinNumber):
BinValues=binvalues(data,BinNumber)
diff=N.sqrt(((xbin-xcen)**2)+((ybin-ycen)**2))
P.plot(diff,BinValues,'x')
def bandfilt(data):
lpcf = 0.2
lpsf = 0.25
hpcf = 0.7
hpsf = 0.6
Rp = 2
Rs = 20
#print [lpcf,hpcf],[lpsf,hpsf],Rp,Rs
#return lhpfilt(data,params=[[lpcf,hpcf],[lpsf,hpsf],Rp,Rs])
return lhpfilt(data,params=[lpcf,lpsf,Rp,Rs])
def lhpfilt(data,params=[0.006,0.01,0,20]):
"""
wp, ws -- Passband and stopband edge frequencies, normalized from 0
to 1 (1 corresponds to pi radians / sample). For example:
Lowpass: wp = 0.2, ws = 0.3
Highpass: wp = 0.3, ws = 0.2
Bandpass: wp = [0.2, 0.5], ws = [0.1, 0.6]
Bandstop: wp = [0.1, 0.6], ws = [0.2, 0.5]
gpass -- The maximum loss in the passband (dB).
gstop -- The minimum attenuation in the stopband (dB).
"""
data.ndim=1
wp,ws,gpass,gstop=params
[n,Wn] = Sig.buttord(wp,ws,gpass,gstop)
[b,a] = Sig.butter(n,Wn)
return filtfilt(b,a,data)
def hpfilt(data):
pass
#########################
#### HELPER FUNCTIONS
#########################
def smooth_gauss(data,sigma):
gauss=Sig.gaussian(10*sigma,sigma)
return Sig.convolve(data,gauss/N.sum(gauss),mode='same')
def smooth_box(data,npix):
return Sig.convolve(data,N.ones(npix)/npix,mode='same')
def fourier_CC(data,templ):
return Sig.correlate(fft(data),fft(templ),mode='same')
def combinecubes(cubes,method='median'):
origshape=cubes[0].shape
bigcube=N.array([])
for cube in cubes:
bigcube=N.concatenate((bigcube,N.ravel(cube)))
bigcube.shape=(len(cubes),N.product(origshape))
return N.reshape(S.median(bigcube,axis=0),origshape)
def medianspec(data):
""" """
if len(data.shape) == 2:
medi=N.median(data)
elif len(data.shape) == 3:
medi=N.reshape(data,(data.shape[0]*data.shape[1],data.shape[2]))
medi=N.median(medi)
else: medi=data
return medi
def degrade_old(data,factor=4.25):
oldlen=data.shape[-1]
newlen=int(N.floor(oldlen/factor))
degr=N.zeros(newlen,'Float32')
for i in N.arange(newlen):
lower=int(N.ceil(i*factor))
upper=int(N.floor((i+1)*factor))-1
if i%2==0: split=upper+1
else: split=lower-1
degr[i]=N.sum(data[lower:upper+1])+ (data[split]/2.0)
return degr/factor
def degrade(data,factor=4.25,quadratic=False):
extfactor=1
while (factor*extfactor)%1 != 0:
extfactor+=1
#print extfactor
oldlen=data.shape[-1]
newlen=int(N.floor(oldlen/factor))
ldata=N.resize(data,(extfactor,oldlen))
ldata=N.transpose(ldata).flat
degr=N.zeros(newlen,'Float32')
fac=int(factor*extfactor)
for i in N.arange(newlen):
#print len(ldata[i*fac:(i+1)*fac])
if quadratic:
degr[i]=N.sqrt(N.sum((ldata[i*fac:(i+1)*fac])**2))/N.sqrt(fac)
else:
degr[i]=N.sum(ldata[i*fac:(i+1)*fac])/fac
return degr
def degradeall(data,factor=4.25,quadratic=False):
origshape=data.shape
if len(data.shape) == 3:
data.shape=(origshape[0]*origshape[1],origshape[2])
npix=data.shape[0]
newlen=int(N.floor(data.shape[-1]/factor))
degrad=N.zeros((npix,newlen),'Float32')
for i in N.arange(npix):
degrad[i]=degrade(data[i,:],factor,quadratic=quadratic)
#print origshape,data.shape
data.shape=origshape
if len(data.shape) == 3: degrad.shape=(origshape[0],origshape[1],newlen)
return degrad
def sortbins(data,error,wave,start,binwidth=0.85,end=False,log=False):
origshape=data.shape
if len(data.shape) == 3:
data.shape=(origshape[0]*origshape[1],origshape[2])
error.shape=(origshape[0]*origshape[1],origshape[2])
wave.shape=(origshape[0]*origshape[1],origshape[2])
if start < wave[:,0].max():
print "setting start to"+str(wave[:,0].max())
start=wave[:,0].max()
if not end: end=wave[:,-1].min()
if end > wave[:,-1].min():
print "setting end to"+str(wave[:,-1].min())
send=wave[:,-1].min()
leng=int((end-start)/binwidth)
end=start+(leng*binwidth)
print start,end,binwidth,leng
dat=N.zeros((data.shape[0],leng),'Float32')
err=dat.copy()
count=dat.copy()
for i in N.arange(data.shape[0]):
bins=((wave-start)/binwidth).astype('Int32')
for j in N.arange(data.shape[1]):
if (bins[i,j] >= 0) and (bins[i,j] <leng):
#print i,j,bins.shape,bins[i,j]
dat[i,bins[i,j]] += data[i,j]
err[i,bins[i,j]] += error[i,j]
count[i,bins[i,j]] += 1.0
#print dat[i,:],count[i,:]
dat /= count
err /= count
err /= N.sqrt(count)
data.shape=origshape
error.shape=origshape
wave.shape=origshape
return dat,err
def intdegrade(data,n,method=N.average):
""" decrease resolution of an image by an integer number"""
nx,ny=data.shape
x,y=N.arange(nx/n),N.arange(ny/n)
erg=N.zeros((nx/n,ny/n),dtype='f')
for i in x:
for j in y:
#print i,j,data[i*n:(i+1)*n,j*n:(j+1)*n]
erg[i,j]=method(data[i*n:(i+1)*n,j*n:(j+1)*n])
return erg
def intdegradespec(data,n,method=N.average):
""" decrease resolution of spectra by an integer number"""
nx,ny,nz=data.shape
x=N.arange(nx)
y=N.arange(ny)
z=N.arange(nz//n)
erg=N.zeros((nx,ny,nz//n),dtype='f')
print erg.shape
for i in x:
for j in y:
for k in z:
erg[i,j,k]=method(data[i,j,k*n:(k+1)*n])
#print method(data[i,j,k*n:(k+1)*n]),erg[i,j,k]
return erg
#####################################
# COOKBOOK and other functions from various sources
#####################################
def gauss_kern(size, sizey=None):
""" Returns a normalized 2D gauss kernel array for convolutions """
size = int(size)
if not sizey:
sizey = size
else:
sizey = int(sizey)
x, y = mgrid[-size:size+1, -sizey:sizey+1]
g = exp(-(x**2/float(size)+y**2/float(sizey)))
return g / g.sum()
def blur_image(im, n, ny=None) :
""" blurs the image by convolving with a gaussian kernel of typical
size n. The optional keyword argument ny allows for a different
size in the y direction.
"""
g = gauss_kern(n, sizey=ny)
improc = signal.convolve(im,g, mode='valid')
return(improc)
def sortout(inarr,banned=0):
"""
gives back three vectors: the values in inarr that are !=
value and the corresponding x and y coordinates. this is old and
ugly, use masked arrays instead!
"""
nx,ny=inarr.nx(),inarr.ny()
xaxis=N.array([])
yaxis=N.array([])
val=N.array([])
for x in N.arange(nx):
for y in N.arange(ny):
if not inarr[x,y] == banned:
#print x,y
xaxis=N.concatenate((xaxis,x))
yaxis=N.concatenate((yaxis,y))
val=N.concatenate((val,inarr[x,y]))
return xaxis,yaxis,val