forked from MBB-team/VBA-toolbox
-
Notifications
You must be signed in to change notification settings - Fork 0
/
VBA_groupBMC.m
327 lines (304 loc) · 9.99 KB
/
VBA_groupBMC.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
function [posterior,out] = VBA_groupBMC(L,options)
% VB algorithm for group-level Bayesian Model Comparison
% function [posterior,out] = VBA_groupBMC(L,options)
% IN:
% - L: Kxn array of log-model evidences (K models; n subjects)
% - options: a structure containing the following fields:
% .priors: this variable can contain a field .a, which is the Kx1
% vector of dummy 'prior counts' of each model (default is one per
% class)
% .MaxIter: max number of iterations
% .MinIter: min number of iterations
% .TolFun: max change in Free Energy
% .DisplayWin: flag for display window
% .verbose: flag for summary statistics display
% .families: a cell array of size nf, which contains the indices of
% the models that belong to each of the nf families. NB: using
% families change the default prior (uniform prior on families), and
% hence the model evidence...
% .figName: figure name
% .modelNames: model names
% OUT:
% - posterior: a structure containg the following fields:
% .r: Kxn matrix of model attributions, i.e. the posterior
% probability, for each subject, of belonging to each model.
% .a: Kx1 vector of 'posterior counts' of each model. These are the
% sufficient statistics of the posterior Dirichlet density on model
% frequencies.
% - out: structure containing the following fields:
% .dt: the algorithm execution time (in sec)
% .options: this is useful when using default options
% .L: Kxn array of log-model evidences (for book keeping)
% .F: the series of free energies along the VB iterations
% .Ef/Vf: first- and second-order posterior moments of the model
% frequencies
% .ep: Kx1 vector of model exceedance probabilities
% .ELJ/Sqf/Sqm: the expected log-joint, and entropies of the VB
% marginal densities
% .F0: the null model evidence
% .bor: Bayesian Omnibus Risk (comparison with the null)
% .Fffx: the fixed-effect log-evidence
% .date: date vector, in matlab format (see clock.m)
% .families: a structure containing the following fields:
% .F0: the (family-) null model evidence
% .ep: nfx1 vector of family exceedance probabilities
% .Ef/Vf: first- and second-order posterior moments of the
% familiy frequencies
% .r/a: family 'posterior counts' and attributions.
[K,n] = size(L);
%-- fill in options with defaults if needed
options.tStart = tic;
if ~isfield(options,'MaxIter')
options.MaxIter = 32;
end
if ~isfield(options,'MinIter')
options.MinIter = 1;
end
if ~isfield(options,'TolFun')
options.TolFun = 1e-4;
end
if ~isfield(options,'DisplayWin')
options.DisplayWin = 1;
end
if ~isfield(options,'verbose')
options.verbose = 1;
end
if ~isfield(options,'families')
options.families = [];
end
if ~isfield(options,'priors')
priors = [];
else
priors = options.priors;
end
if isempty(priors) || ~isfield(priors,'a') || isempty(priors.a)
priors.a = 1e0*ones(K,1);
if ~isempty(options.families)
nf = length(options.families);
for i=1:nf
indf = options.families{i};
priors.a(indf) = 1/length(indf);
end
end
priors.a = priors.a./sum(priors.a); % 1 prior count in total!
options.priors = priors;
end
if ~isempty(options.families)
nf = length(options.families);
options.C = zeros(K,nf);
tmp = [];
for i=1:nf
indf = options.families{i};
if isempty(indf)
disp(['Error: family #',num2str(i),' is empty!'])
posterior = [];
out = [];
return
end
if ~isempty(intersect(tmp,indf))
disp('Error: families are not mutually exclusive!')
posterior = [];
out = [];
return
end
tmp = [tmp;vec(indf)];
options.C(indf,i) = 1;
end
if ~isequal(vec(unique(tmp)),vec(1:K))
if numel(unique(tmp)) < K
disp('Error: families do not cover the entire set of models!')
else
disp('Error: families contain models that do not exist!')
end
posterior = [];
out = [];
return
end
end
if ~isfield(options,'figName')
options.figName = 'RFX-BMS';
end
if ~isfield(options,'modelNames')
options.modelNames = [];
else
if ~iscell(options.modelNames) || ~isequal(length(options.modelNames),K)
options.modelNames = [];
end
end
%-- initialize posterior and free energy
f0 = priors.a./sum(priors.a);
priors.r = repmat(f0,1,n);
posterior = priors;
F = FE(L,posterior,priors);
if options.DisplayWin
out = wrapUp(L,posterior,priors,F,options);
options.handles = VBA_displayGroupBMC(posterior,out);
drawnow
end
%-- enter VB iterative algorithm
stop = 0;
it = 1;
while ~stop
it = it+1;
% update subject attributions
Elogr = VBA_ElogBeta(posterior.a,sum(posterior.a)-posterior.a);
% Elogr = psi(posterior.a) - psi(sum(posterior.a));
for i=1:n
tmp = L(:,i)+Elogr;
g = exp(tmp-max(tmp));
posterior.r(:,i) = g./sum(g);
end
% update posterior model counts
posterior.a = priors.a + posterior.r*ones(n,1);
% calculate Free Energy
F(it) = FE(L,posterior,priors);
% check stopping criteria
stop = checkStop(it,F,options);
if options.DisplayWin
out = wrapUp(L,posterior,priors,F,options);
options.handles = VBA_displayGroupBMC(posterior,out);
drawnow
end
end
%-- wrap up VBA output
out = wrapUp(L,posterior,priors,F,options);
try
out.ep = VBA_ExceedanceProb(posterior.a,[],'dirichlet',0);
if ~isempty(out.options.families)
out.families.ep = VBA_ExceedanceProb(out.families.a,[],'dirichlet',0);
end
catch
if options.verbose
disp('Warning: exceedance probabilities are approximated!');
end
end
out.date = clock;
out.dt = toc(options.tStart);
if options.DisplayWin
VBA_displayGroupBMC(posterior,out);
end
%-- display summary statistics
if options.verbose
fprintf('---')
fprintf('\n')
fprintf(['Date: ',datestr(out.date),'\n'])
if floor(out.dt./60) == 0
timeString = [num2str(floor(out.dt)),' sec'];
else
timeString = [num2str(floor(out.dt./60)),' min'];
end
fprintf(['VB converged in ',num2str(it),' iterations (took ~',timeString,').','\n'])
fprintf(['Dimensions:','\n'])
fprintf([' - subjects: n=',num2str(n),'\n'])
fprintf([' - models: K=',num2str(K),'\n'])
if ~isempty(out.options.families)
fprintf([' - families: m=',num2str(nf),'\n'])
end
fprintf(['Posterior probabilities:','\n'])
fprintf([' - RFX: p(H1|y)= ','%4.3f','\n'],1-out.bor)
fprintf([' - null: p(H0|y)= ','%4.3f','\n'],out.bor)
end
%-- subfunctions
function out = wrapUp(L,posterior,priors,F,options)
% wraps up the ou structure for display purposes
out.dt = toc(options.tStart);
out.options = options;
out.L = L;
out.F = F;
% derive first and second order moments on model frequencies:
[out.Ef,out.Vf] = Dirichlet_moments(posterior.a);
% derive exceedance probabilities
% out.ep = VBA_ExceedanceProb(out.Ef,out.Vf,'gaussian');
out.ep = VBA_ExceedanceProb(posterior.a,[],'dirichlet',0);
% store accuracy and entropy terms of the Free Energy
[F,out.ELJ,out.Sqf,out.Sqm] = FE(L,posterior,priors);
% derive Free Energy under the null:
if ~isempty(options.families)
[out.F0,out.families.F0] = FE_null(L,options);
out.bor = 1/(1+exp(F-out.families.F0));
[out.Fffx,out.families.Fffx] = FE_ffx(L,options);
else
[out.F0] = FE_null(L,options);
out.bor = 1/(1+exp(F-out.F0));
[out.Fffx] = FE_ffx(L,options);
end
% pool evidence over families
if ~isempty(options.families)
out.families.r = options.C'*posterior.r;
out.families.a = options.C'*posterior.a;
[out.families.Ef,out.families.Vf] = Dirichlet_moments(out.families.a);
% out.families.ep = VBA_ExceedanceProb(out.families.Ef,out.families.Vf,'gaussian');
out.families.ep = VBA_ExceedanceProb(out.families.a,[],'dirichlet',0);
end
function stop = checkStop(it,F,options)
% checks stopping criteria
stop = 0;
if it<options.MinIter
return
end
dF = F(it) - F(it-1);
if abs(dF)<=options.TolFun || it>=options.MaxIter
stop = 1;
end
function [F,ELJ,Sqf,Sqm] = FE(L,posterior,priors)
% derives the free energy for the current approximate posterior
[K,n] = size(L);
a0 = sum(posterior.a);
Elogr = VBA_ElogBeta(posterior.a,sum(posterior.a)-posterior.a);
% Elogr = psi(posterior.a) - psi(sum(posterior.a));
Sqf = sum(gammaln(posterior.a)) - gammaln(a0) - sum((posterior.a-1).*Elogr);
Sqm = 0;
for i=1:n
Sqm = Sqm - sum(posterior.r(:,i).*log(posterior.r(:,i)+eps));
end
ELJ = gammaln(sum(priors.a)) - sum(gammaln(priors.a)) + sum((priors.a-1).*Elogr);
for i=1:n
for k=1:K
ELJ = ELJ + posterior.r(k,i).*(Elogr(k)+L(k,i));
end
end
F = ELJ + Sqf + Sqm;
function [F0m,F0f] = FE_null(L,options)
% derives the free energy of the 'null' (H0: equal frequencies)
[K,n] = size(L);
if ~isempty(options.families)
f0 = options.C*sum(options.C,1)'.^-1/size(options.C,2);
F0f = 0;
else
F0f = [];
end
F0m = 0;
for i=1:n
tmp = L(:,i) - max(L(:,i));
g = exp(tmp)./sum(exp(tmp));
for k=1:K
F0m = F0m + g(k).*(L(k,i)-log(g(k)+eps)-log(K));
if ~isempty(options.families)
F0f = F0f + g(k).*(L(k,i)-log(g(k)+eps)+log(f0(k)));
end
end
end
function [Fffx,Fffx_fam] = FE_ffx(L,options)
% derives the free energy of the 'fixed-effect' analysis
[K,n] = size(L);
r0 = ones(K,1)./K;
ss = sum(L,2) + log(r0);
logz = ss - max(ss);
z = exp(logz)./sum(exp(logz));
Fffx = z'*ss - sum(z.*log(z+eps));
if isempty(options.families)
Fffx_fam = [];
else
f0 = options.C*sum(options.C,1)'.^-1/size(options.C,2);
ss = sum(L,2) + log(f0);
logz = ss - max(ss);
zf = exp(logz)./sum(exp(logz));
Fffx_fam = zf'*ss - sum(zf.*log(zf+eps));
end
function [E,V] = Dirichlet_moments(a)
% derives the first- and second-order moments of a Dirichlet density
a0 = sum(a);
E = a./a0;
V = -a*a';
V = V - diag(diag(V)) + diag(a.*(a0-a));
V = V./((a0+1)*a0^2);