-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathch1.html
11208 lines (10842 loc) · 835 KB
/
ch1.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
<div class="cell border-box-sizing text_cell rendered">
<div class="prompt input_prompt">
</div>
<div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<h1 id="chapter-1-workbook">Chapter 1 Workbook</h1>
<p>These are my solutions to the Chapter 1 problems of <a href="http://www.amazon.com/gp/product/0521865565/">Principles of
Planetary Climate</a>. I
make no claims as to their accuracy, but if you are interested in
seeing what I've done go right ahead.</p>
<p>First we have some imports and useful constants. Python doesn't have a
built-in sign function, so we have a simple implementation here
also. I've imported seaborn, which is an interesting graphing library
built on top of matplotlib. It does a lot of fancy things we don't
need, but importing it also makes all matplotlib graphs look nicer.</p>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">
In [1]:
</div>
<div class="inner_cell">
<div class="input_area">
<div class="highlight"><pre><span class="kn">from</span> <span class="nn">math</span> <span class="kn">import</span> <span class="n">e</span><span class="p">,</span> <span class="n">log2</span><span class="p">,</span> <span class="n">pi</span><span class="p">,</span> <span class="n">log</span>
<span class="kn">from</span> <span class="nn">functools</span> <span class="kn">import</span> <span class="n">partial</span>
<span class="kn">import</span> <span class="nn">pandas</span> <span class="kn">as</span> <span class="nn">pd</span>
<span class="kn">import</span> <span class="nn">numpy</span> <span class="kn">as</span> <span class="nn">np</span>
<span class="kn">import</span> <span class="nn">seaborn</span> <span class="kn">as</span> <span class="nn">sns</span>
<span class="kn">import</span> <span class="nn">matplotlib.pyplot</span> <span class="kn">as</span> <span class="nn">plt</span>
<span class="kn">from</span> <span class="nn">scipy.integrate</span> <span class="kn">import</span> <span class="n">romb</span><span class="p">,</span> <span class="n">quad</span><span class="p">,</span> <span class="n">odeint</span>
<span class="kn">from</span> <span class="nn">scipy.interpolate</span> <span class="kn">import</span> <span class="n">InterpolatedUnivariateSpline</span>
<span class="kn">from</span> <span class="nn">scipy.misc</span> <span class="kn">import</span> <span class="n">derivative</span>
<span class="c"># gravitational constant</span>
<span class="n">G</span> <span class="o">=</span> <span class="mf">6.67e-11</span>
<span class="c"># mass of the earth</span>
<span class="n">M_e</span> <span class="o">=</span> <span class="mf">6e24</span>
<span class="c"># radius of earth, in m</span>
<span class="n">r_earth</span> <span class="o">=</span> <span class="mi">6378100</span>
<span class="c"># surface area of earth</span>
<span class="n">sa_e</span> <span class="o">=</span> <span class="mi">4</span><span class="o">*</span><span class="n">pi</span><span class="o">*</span><span class="n">r_earth</span><span class="o">**</span><span class="mi">2</span>
<span class="n">seconds_per_year</span> <span class="o">=</span> <span class="mi">60</span> <span class="o">*</span> <span class="mi">60</span> <span class="o">*</span> <span class="mi">24</span> <span class="o">*</span> <span class="mi">365</span>
<span class="c">#VSMOW</span>
<span class="n">O18_p_O16</span> <span class="o">=</span> <span class="mi">1</span><span class="o">/</span><span class="mf">498.7</span>
<span class="n">D_p_H</span> <span class="o">=</span> <span class="mi">1</span><span class="o">/</span><span class="mi">6420</span>
<span class="k">def</span> <span class="nf">sign</span><span class="p">(</span><span class="n">x</span><span class="p">):</span>
<span class="k">try</span><span class="p">:</span>
<span class="k">return</span> <span class="n">x</span><span class="o">/</span><span class="nb">abs</span><span class="p">(</span><span class="n">x</span><span class="p">)</span>
<span class="k">except</span> <span class="ne">ZeroDivisionError</span><span class="p">:</span>
<span class="k">return</span> <span class="mi">0</span>
<span class="o">%</span><span class="k">matplotlib</span> <span class="n">inline</span>
</pre></div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered">
<div class="prompt input_prompt">
</div>
<div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<h3 id="problem-1-">Problem 1.</h3>
<p>This is pretty simple. We just need to plot a function. You can do
basic math on NumPy arrays, which is pretty sweet.</p>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">
In [2]:
</div>
<div class="inner_cell">
<div class="input_area">
<div class="highlight"><pre><span class="c"># problem 1.1 -</span>
<span class="k">def</span> <span class="nf">luminosity</span><span class="p">(</span><span class="n">ages</span><span class="p">,</span> <span class="n">t0</span><span class="o">=</span><span class="mf">4.6e9</span><span class="p">):</span>
<span class="k">return</span> <span class="p">(</span><span class="mi">1</span> <span class="o">/</span> <span class="p">(</span><span class="mi">1</span> <span class="o">+</span> <span class="mf">0.4</span> <span class="o">*</span> <span class="p">(</span><span class="mi">1</span> <span class="o">-</span> <span class="n">ages</span><span class="o">/</span><span class="n">t0</span><span class="p">)))</span>
<span class="k">def</span> <span class="nf">problem1</span><span class="p">():</span>
<span class="n">ages</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">linspace</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="mf">5e9</span><span class="p">,</span> <span class="mi">100</span><span class="p">)</span>
<span class="n">luminosities</span> <span class="o">=</span> <span class="n">luminosity</span><span class="p">(</span><span class="n">ages</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">figure</span><span class="p">(</span><span class="n">figsize</span><span class="o">=</span><span class="p">(</span><span class="mi">12</span><span class="p">,</span><span class="mi">9</span><span class="p">))</span>
<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s">"Luminosity vs. age of the Sun"</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">ages</span><span class="p">,</span> <span class="n">luminosities</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">xlabel</span><span class="p">(</span><span class="s">"Age (billions of years)"</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">ylabel</span><span class="p">(</span><span class="s">"Luminosity as a fraction of current day"</span><span class="p">)</span>
<span class="n">problem1</span><span class="p">()</span>
</pre></div>
</div>
</div>
</div>
<div class="output_wrapper">
<div class="output">
<div class="output_area"><div class="prompt"></div>
<div class="output_png output_subarea ">
<img src="
AAALEgAACxIB0t1+/AAAIABJREFUeJzs3XmcnfP5//HXJagtiGoVjVIlat+aUspQJWKrpXxpqV1V
pJaWan8q2irVWmvfW0tjjUpLbZUQEWILaim1hdhqj5BIcv3+uE/akSYz92TOmXuW1/PxOI+Zc59z
n/OeRVz55LqvT2QmkiRJktpnrqoDSJIkSd2BhbUkSZJUBxbWkiRJUh1YWEuSJEl1YGEtSZIk1YGF
tSRJklQHFtaSeqSIWCYi3o+IaOB7HBUR5zfq9buLiJg/IoZHxDsRcWXJc0ZExD6NziZJbWFhLanT
iYjnI+IbjXyPzHwxM3tnA4f5Z+bxmbkfQEQsGxHTI8I/d//XTsBngcUyc5eZH4yIIRFx6UyHs3Zr
t4jYMCJG1wr7NyNiVESsW4/XltSzzF11AEmahboVTZ1Qw1bIu7AvAP/MzOkd/cYRsTDwF+AA4Crg
U8DXgckdnUVS1+fKiaQuIyIuiYhfNrvfFBHjm91/PiJ+FBHjImJiRFwQEUtExE0R8V5E3BoRi9ae
+4kV5FprwS9qq5XvRcTNEfHpZq+9bUT8IyLejog7ImKlZo8dGREv1c57MiI2rR1vvtJ6Z+3jO7Xn
bVRbHV212et8NiI+aP6+teOfqq2mrtLs2GciYlJELF67/aWW7c2IuLNMi0tELFo77/WIeKvWjrF0
s8eXq73WjO/dmc1XjiNivdpK79sR8XBEbNzCe3259j1+OyIei4htasePBY4Gdqm15uw103kDgKOa
Pf5Qs4eXbeHnVTbbikBm5pVZ+Cgzb83MR2uvM2Smr7lNvzeSehYLa0ldSWsr2QnsAGxGUTBtA9wI
/AT4DMWfeYNbOH9XYE+KtoR5gR8BRMSKwBW1cxevvebwiJgnIvoBBwHrZubCwObA883yzPD12sdF
MnPhzLwTGAp8d6b3vy0z3/zEF5U5Gbi29vgMOwMjMvPfwOHA+Fq2zwJHlWxxmQu4EFimdvsQOKPZ
41cAY4DFgCG1rFn7nixNsdL7i8zsU/teXRsRi8/8JhExDzAc+BvFz+Fg4PKIWDEzjwF+DQytteZc
PNPX/reZHl9rxssCuzHrn1fpbMBTwLTaX9oGRESfmR4v832c5e+NpJ7HwlpSV9PaSuzvM/ONzJwA
3AWMycxxteJ0GLDWbM5L4OLMfCYzP6JoC1iz9tguwF8y8/bMnAb8DpgfWB+YRtE+sEpEzFPr3X52
FllnlfsPfLJY3h2YuZd4hiuA/2t2f7faMYApwJLAspk5LTPvns1rfEJmvpWZw2qrtBMpCtiNobi4
E1gX+HlmTq295g3NTv8ucGOt8CUzbwPuBwbO4q3WAxbMzBNqr3UHReE742sPWv65zurxBC6azc+r
dLbMfB/YsPZ65wOvR8SfI+Kzzd67JS393kjqYSysJXU3rzX7/MOZ7n8ELNTCua/OdO6M5y4FvDjj
gdpq8Hhg6cx8BjiEYkX3tYj4U0QsWSZoZt4HTKq1tKwELM8ni9fmRgALRET/iFgWWIPiLwoAvwWe
AW6JiH9FxJFl3j8iFoiIc2stNO8CI4FFam0kSwFv1YrFGV7iv4XmF4Bv11ot3o6It4ENgM/N4q2W
ovh+NfcCsPQsntsWs/t5tSUbmflkZu6VmX2BVWt5T61DDkk9jIW1pK7kA2CBZvdnWSjNpB4XC75M
UawVL1gUnn1rx8nMP2Xm12vPSeA3s3iN2bUU/IFihXV34OrMnDKrJ9VWyq+iWOXdFRiemR/UHpuY
mT/KzOWBbYHDZvR5t+JwipaZ/pm5CMVq9YzV4VeAxSJi/mbP79vs63gRuDQz+zS79c7ME2fxPhOA
vjP1fX+BolAvo60XNbYl2ydk5lMUP5MZve9z8jsnqYeysJbUWc0bEfM1u80NPAwMjIg+EfE5ipXi
eppdEX41sFVEbFrrFz6cYvV7dESsWDv+KYpJEh9RtIfM7A2KAnH5mY5fRtEX/h3gj63km9EO0rwN
hIjYKiK+VCtc36u9/6wyzGwhihXWdyNiMeCYGQ9k5gsU7RNDar3k6wNbz5R7m4jYPCJ61X5GTc0v
fmxmDDAJOKL2Wk211xpaIiMU/+qw7CwuyJzdz6t0tojoFxGHzXgsIvpS/MXlntpTHgY2ioi+EbEI
xYWU//MyJb8OSd2chbWkzupGimJsxu3nFP3H4yguDvwbRWHW2sVlOdPnM99v9bm1VczvAr+nKJC3
ArbJzKkU/dXH146/QnEB4VGzeI1JwHHA3bX2hP614y8BDwDTM3NUi19I0ToykaKf+qZmD60A3Aq8
D4wGzszMkQARcWNE/GQ2L3kqRa/4v2vn3TTT9+A7FH3kbwK/BK6k6OeekXs74KfA6xSrxIczi/+v
ZObHFBeSbln7Pp0B7J6Z/5z5+zQbV9c+vhkR9zd/6Zk+n/G9Lp2N4nv2VeDeiJhIUVA/Uns+mXlr
7et+BBhLcRFmqd8bST1PNHBvBCLiIor/Ab2emavN5jmnU/xhOwnYMzMfqh1/nv+uvHycmf0bFlSS
KlT7s/KlzPx51VlaEsWuiI9n5rFVZ5GkzqjRK9YXAwNm92BEDAS+lJkrAPsDZzd7OIGmzFzLolpS
dxURywHbU4y961QiYt2IWD4i5oqILSn6t6+vOpckdVYNLawz8y7g7Raesi3FRSJk5r3AohGxRLPH
7VuT1G1FsdnNI8CJtZ7mzuZzwB0U7RKnAN/PzHHVRpKkzqvqLc2X5pMjmF6qHXuNYsX6toiYBpyb
medXkE+SGiYzj6bYdbBTysy/UMybliSVUHVhDbNfld4wMydExGeAWyPiydoKuCRJktTpVF1Yv0wx
F3WGz/PfubATah/fiIhhQH+KXdT+IyK88lqSJEkdIjNbbFOuurC+ARgEDI2I9YB3MvO1iFgA6JWZ
70fEgsDmwCyvQm/kVBN1TUOGDGHIkCFVx1An4++FZsXfC82Kvxealf8dpf+/GlpYR8SfKHbyWjwi
xlNsPjAPQGaem5k3RsTAiHiGYnervWqnfg64rvYFzA1cnpm3NDKrJEmS1B4NLawzc9cSzxk0i2PP
Ams2JJQkSZLUAO68qG6nqamp6gjqhPy90Kz4e6FZ8fdCc6qhOy82WkRkV84vSZKkriEiWr140RVr
SZIkqQ4srCVJkqQ6sLCWJEmS6sDCWpIkSaoDC2tJkiSpDiysJUmSpDqwsJYkSZLqwMJakiRJqgML
a0mSJKkOLKwlSZKkOrCwliRJkurAwlqSJEmqAwtrSZIkqQXTp5d7noW1JEmSNBuTJsEWW5R7roW1
JEmSNAsffABbbw1LLlnu+RbWkiRJ0kxmFNXLLAMXX1zuHAtrSZIkqZkZRfWyy8KFF0KvXuXOs7CW
JEmSaj74ALbaCpZbDi64oHxRDRbWkiRJEgATJ8LAgfDFL7a9qAYLa0mSJOk/RfUKKxRF9VxzUCVb
WEuSJKlHe/992HJLWHFFOO+8OSuqwcJakiRJPdh77xVzqldeuX1FNVhYS5IkqYd6913YfHNYc004
++z2FdVgYS1JkqQe6O234ZvfhP794cwz219Ug4W1JEmSepi33oLNNoMNNoDTToOI+ryuhbUkSZJ6
jDffhG98AzbZBE4+uX5FNVhYS5IkqYd44w3YdNPiYsXf/ra+RTVYWEuSJKkHeO21YpV6663h+OPr
X1SDhbUkSZK6uQkToKkJvv1t+NWvGlNUg4W1JEmSurHx42HjjWH33eGYYxpXVAPM3biXliRJkqrz
wgtFT/WBB8KPftT497OwliRJUrfz7LPF9I9DD4XBgzvmPW0FkSRJUrfy9NNFT/URR3RcUQ0W1pIk
SepGnnyymP7x858XLSAdyVYQSZIkdQuPPlrMqD7hBNhjj45/fwtrSZIkdXkPPggDBxZblO+ySzUZ
LKwlSZLUpd17L2y7LZxzDmy/fXU5LKwlSZLUZd11F+y4I1x8MWy1VbVZLKwlSZLUJd1+O+y6K1xx
BWy2WdVpLKwlSZLUBf3tb8UFitdcAxttVHWaguP2JEmS1KVcf31RVP/5z52nqAYLa0mSJHUhQ4fC
978PN90E669fdZpPsrCWJElSl3DxxXD44XDrrbDOOlWn+V/2WEuSJKnTO+usYuOXv/8d+vWrOs2s
WVhLkiSpUzvpJDjzTBg5EpZbruo0s2dhLUmSpE4pE371K7jsMrjzTvj856tO1DILa0mSJHU6mXDU
UfDXvxYr1Z/7XNWJWmdhLUmSpE5l+nQYPBjGjIE77oDFF686UTkW1pIkSeo0pk6F/faDZ54pdlZc
ZJGqE5VnYS1JkqROYcoU+O534Z13ip0VF1yw6kRtY2EtSZKkyn34IXz729CrF9xwA8w3X9WJ2s4N
YiRJklSpiRNhq61g4YXhmmu6ZlENFtaSJEmq0DvvwOabw/LLw6WXwjzzVJ1ozllYS5IkqRKvvw5N
TdC/P5x3XtEG0pVZWEuSJKnDjR8PG20E220Hp5wCEVUnaj8La0mSJHWoZ56Br3+9GKt37LHdo6gG
C2tJkiR1oMceg403hp/+FA4/vOo09eW4PUmSJHWI++6DbbctWj923bXqNPVnYS1JkqSGGzECdt4Z
LroItt666jSNYSuIJEmSGuqvfy2K6iuv7L5FNVhYS5IkqYH+9CfYZx8YPhw22aTqNI3V0MI6Ii6K
iNci4tEWnnN6RDwdEeMiYq1mxwdExJO1x45sZE5JkiTV3znnwI9/DLfdBl/9atVpGq/RK9YXAwNm
92BEDAS+lJkrAPsDZ9eO9wLOqJ27MrBrRHy5wVklSZJUJyecACeeCCNHwqqrVp2mYzT04sXMvCsi
lm3hKdsCf6g9996IWDQiPgcsBzyTmc8DRMRQYDvgiUbmlSRJUvtkwlFHFa0fo0bBUktVnajjVD0V
ZGlgfLP7L9WOLTWL4z3gHxAkSZK6rmnT4KCD4MEH4c474dOfrjpRx6q6sAZo1147Q4YM+c/nTU1N
NDU1tTOOJEmS2mrKFPje9+C11+D226F376oTtc+IESMYMWJEm86JzGxMmhlvULSCDM/M1Wbx2DnA
iMwcWrv/JLAxRSvIkMwcUDt+FDA9M38z0/nZ6PySJElq2aRJsOOOMO+8xUi9+earOlH9RQSZ2eKC
cNXj9m4A9gCIiPWAdzLzNeB+YIWIWDYi5gV2qT1XkiRJncjbb8M3vwlLLAHXXts9i+qyGtoKEhF/
oliBXjwixgPHAPMAZOa5mXljRAyMiGeAD4C9ao9NjYhBwM1AL+DCzPTCRUmSpE7k1Vdhiy1g003h
pJNgrqqXbCvW8FaQRrIVRJIkqRrPPVesVO+1F/z0pxDtumqu8yvTCtIZLl6UJElSF/LYY7DllkVB
feCBVafpPCysJUmSVNqYMfCtb8Epp8Cuu1adpnOxsJYkSVIpN98Mu+8Ol1wCAwdWnabz6eEt5pIk
SSpj6FDYYw8YNsyienZcsZYkSVKLzjwTjj8ebrsNVvufnUk0g4W1JEmSZikTjj0WLr8c7roLlluu
6kSdm4W1JEmS/se0aTB4MNxzD4waVWwAo5ZZWEuSJOkTpkwp+qlffRXuuAMWWaTqRF2DFy9KkiTp
PyZOhG22gcmT4W9/s6huCwtrSZIkAfDGG8X25H37wtVXw3zzVZ2oa7GwliRJEi+8ABtuWGxTfv75
MLcNw21mYS1JktTDPfZYUVQfdBAcdxxEVJ2oa/LvIpIkST3Y3XfDDjsUW5TvtlvVabo2C2tJkqQe
6i9/gb32gssugy22qDpN12criCRJUg908cWw777w179aVNeLK9aSJEk9SCaccAKcey6MHAn9+lWd
qPuwsJYkSeohpk+HQw8tNn0ZPRqWWqrqRN2LhbUkSVIPMHnyf3dTvPNOWHTRqhN1P/ZYS5IkdXPv
vQcDB8LUqXDzzRbVjWJhLUmS1I29+io0NcGKK8JVV7mbYiNZWEuSJHVTTz8NG2wA228PZ50FvXpV
nah7s8dakiSpG7rvPthuO/jFL2C//apO0zNYWEuSJHUzN91UXKh40UWwzTZVp+k5bAWRJEnqRi65
pNhN8YYbLKo7mivWkiRJ3UAm/PrXcMEFMGIErLRS1Yl6HgtrSZKkLm7aNBg8GO6+u7i58Us1LKwl
SZK6sA8/hO98B959t9iifJFFqk7Uc9ljLUmS1EW9+SZstlkxm/rGGy2qq2ZhLUmS1AU9/3wxo3qD
DeCyy+BTn6o6kSysJUmSupiHHioK6gMPhBNPhLms6DoFe6wlSZK6kFtvLXqqzzoLdtqp6jRqzr/f
SJIkdRGXXgrf/S5ce61FdWfkirUkSVInlwknnADnnAN33AErr1x1Is2KhbUkSVInNnUqDBoEY8bA
Pfc4o7ozs7CWJEnqpD74AP7v/2DyZLjzTlh44aoTqSX2WEuSJHVCr70GTU2w+OLw179aVHcFFtaS
JEmdzFNPwfrrw1ZbwUUXwTzzVJ1IZdgKIkmS1IncfTfsuCMcdxzss0/VadQWFtaSJEmdxDXXFJu+
XHopDBhQdRq1lYW1JElSxTLhlFPg5JPhlltgrbWqTqQ5YWEtSZJUoWnT4JBDivnUo0fDMstUnUhz
ysJakiSpIh98ALvtBhMnwqhRsOiiVSdSezgVRJIkqQKvvQabbFIU0zfdZFHdHVhYS5IkdbAZ4/QG
DoRLLoF55606kerBVhBJkqQOdOed8O1vwwknwF57VZ1G9WRhLUmS1EEuvxwOPRSuuAI226zqNKo3
C2tJkqQGyyw2fLngAvj732HVVatOpEawsJYkSWqgjz+GAw6AcePgnntgySWrTqRGsbCWJElqkHfe
gZ12ggUWgJEjYaGFqk6kRnIqiCRJUgO88AJsuCGsvDIMG2ZR3RNYWEuSJNXZ2LHwta/BvvvC6adD
r15VJ1JHsBVEkiSpjoYNg/33Ly5U3G67qtOoI1lYS5Ik1UEmnHwynHIK/O1vsM46VSdSR7OwliRJ
aqepU2HQIBg9urgts0zViVQFC2tJkqR2eO892HlniIBRo2DhhatOpKp48aIkSdIcevHFYvLHcsvB
8OEW1T2dhbUkSdIcGDsW1l8f9twTzjoL5rYPoMfzV0CSJKmNrr0Wvv99uPBC2HbbqtOos7CwliRJ
KikTTjwRzjgDbr4Z1l676kTqTCysJUmSSpgyBQ48EB56CMaMgaWXrjqROhsLa0mSpFa8/TbsuCP0
7g133un25Jo1L16UJElqwTPPFBcprr02XHedRbVmz8JakiRpNkaOLMbpHXYY/O530KtX1YnUmTW0
sI6IARHxZEQ8HRFHzuLxPhExLCLGRcS9EbFKs8eej4hHIuKhiLivkTklSZJmdvHFxcYvl18O++9f
dRp1BQ3rsY6IXsAZwGbAy8DYiLghM59o9rSfAg9m5vYR0Q84s/Z8gASaMvOtRmWUJEma2fTpcNRR
xUi9kSNhpZWqTqSuopEr1v2BZzLz+cz8GBgKbDfTc74M3AGQmU8By0bEZ5o9Hg3MJ0mS9AkffFBc
pDhmDNx7r0W12qaRhfXSwPhm91+qHWtuHLADQET0B74AfL72WAK3RcT9EbFfA3NKkiTx0kvw9a9D
nz5w663w6U9XnUhdTSPH7WWJ55wAnBYRDwGPAg8B02qPbZiZE2or2LdGxJOZedfMLzBkyJD/fN7U
1ERTU1N7c0uSpB7m/vvhW9+CwYPhxz+G8N/Me7wRI0YwYsSINp0TmWXq37aLiPWAIZk5oHb/KGB6
Zv6mhXOeA1bLzIkzHT8GmJiZJ810PBuVX5Ik9QxXXQUHHQTnn18U19KsRASZ2eJfuRrZCnI/sEJE
LBsR8wK7ADfMFHCR2mPU2j1GZubEiFggInrXji8IbE6xoi1JklQXmfCLXxQr1LfealGt9mtYK0hm
To2IQcDNQC/gwsx8IiIOqD1+LrAycElEJPAYsE/t9CWAYVH8O8zcwOWZeUujskqSpJ7lww9h773h
ueeKixQ/97mqE6k7aFgrSEewFUSSJLXVK68Uq9Nf+hJceCHMN1/VidQVVN0KIkmS1Kk8/DCstx5s
uy1cdplFteqrkVNBJEmSOo3rroPvfx/OOgt22qnqNOqOLKwlSVK3lgnHHQfnnQd/+xusvXbVidRd
WVhLkqRua8ZFis8+W1ykuOSSVSdSd2aPtSRJ6pZefhk22gh69YIRIyyq1XgW1pIkqdsZOxa++lXY
YQe49FKYf/6qE6knsBVEkiR1K0OHwsEHu5OiOl6rhXVE9MrMaR0RRpIkaU5Nnw5HHw2XXw633QZr
rFF1IvU0ZVasn46Ia4GLM/PxRgeSJElqq/ffh913h7fegvvug89+tupE6onK9FivCTwNXBAR90bE
ARGxcINzSZIklfLcc/C1r8FnPlOsVFtUqypt2tI8IpqAy4E+wNXALzPzmcZEK5XHLc0lSerBRo6E
XXaBn/0MBg2CaHHDaWnOldnSvEyP9dzAVsBewLLAScAVwIbAjcCK7U4qSZLURueeCz//edFTvdlm
VaeRyvVY/xMYAZyYmaObHb8mIjZuSCpJkqTZ+PhjOOQQuP12GDUKVlih6kRSodVWkIjonZnvd1Ce
NrEVRJKknuXf/4ZvfxsWWACuuAIWWaTqROop6tIKAkyNiEHAysCM8eqZmXu3N6AkSVJZjzxSzKXe
eWc47rhiR0WpMykzFeRSYAlgAEVLyOeBiQ3MJEmS9AnXXQff+Ab86ldwwgkW1eqcyrSCPJyZa0bE
I5m5ekTMA4zKzK92TMQWs9kKIklSNzZ9OvziF3DRRTBsGKyzTtWJ1FPVqxVkSu3juxGxGvAq8Jn2
hpMkSWrJxInwve/Bq68Wm7587nNVJ5JaVqYV5PyIWAz4f8ANwOPAiQ1NJUmSerR//QvWWw/69IG/
/92iWl1DmzaI6WxsBZEkqfu57Tb4zneKGdU/+IGbvqhzaFcrSEQc3uxuAlH7WBzIPLndCSVJkmoy
4dRT4cQT4aqrYGN3y1AX01KPdW+KQrof8BWKNpAAtgbua3w0SZLUU3z4IRxwADz6KIwZA1/4QtWJ
pLYrMxXkLmDgjE1iIqI3cGNmfr0D8rXIVhBJkrq+l16C7beH5Zcvpn8ssEDViaT/VaYVpMzFi58F
Pm52/+PaMUmSpHYZNQr694eddoI//cmiWl1bmXF7fwTui4jrKFpBvgX8oaGpJElSt5YJ554LxxwD
f/gDDBhQdSKp/UpNBYmIdYCvU/Rc35mZDzU6WBm2gkiS1PVMngyDBsE998D118OXvlR1Iql1ZVpB
HLcnSZI6zIQJsOOOsNRScMkl0Lt31YmkcurVYy1JktRu99xT9FNvvTVcfbVFtbqfMj3WkiRJ7XL+
+fCzn8HFF8NWW1WdRmqMVlesI+I3ZY5JkiTNbPLkYj71ySfDXXdZVKt7K9MKsvksjg2sdxBJktS9
TJgATU3wxhtw773Qr1/ViaTGmm1hHREHRsSjQL+IeLTZ7XngkQ5LKEmSupxRo+ArX4FttoFrroGF
F646kdR4s50KEhGLAH2AE4AjKWZYA7yfmW92TLyWORVEkqTOJRPOPhuGDCnmU2+5ZdWJpPqo27i9
iOgFLEGzix0z88V2J2wnC2tJkjqPjz6CH/wAxo6FYcOcT63upUxh3epUkIg4GDgGeB2Y1uyh1doX
T5IkdRcvvljMp15uuWKs3kILVZ1I6nitrlhHxL+A/p2l/aM5V6wlSare3/8O3/kOHH54cYsW1/Sk
rqkuK9bAi8B79YkkSZK6i0w46aTidvnlsOmmVSeSqlWmsH4OuCMi/gpMqR3LzDy5cbEkSVJnNnEi
7LMPPPtsMUpvmWWqTiRVr8wc6xeB24B5gYVqNzchlSSph3r6aVhvPVhwwWLTF4tqqVBqKghARCyY
mR80OE+b2GMtSVLHGj68WKn+5S9h//3tp1bPUabHusyW5l+LiMeBJ2v314iIs+qUUZIkdQHTpsHR
Rxfj9G64odim3KJa+qQyPdanAgOAPwNk5riI2LihqSRJUqfx5puw224wZQo88AB89rNVJ5I6pzI9
1rPaDGZqA7JIkqRO5sEHYd11YY014NZbLaqllpQatxcRGwBExLzAYOCJhqaSJEmVu/hiOOKIYovy
nXaqOo3U+ZUprL8PnA4sDbwM3AIc1MhQkiSpOpMnw+DBMHIk3HknfPnLVSeSuoYWC+uImBs4LTN3
66A8kiSpQi++WKxOL7MM3HcfLLxw1YmkrqPFHuvMnAp8ISI+1UF5JElSRW65Bfr3h112gauvtqiW
2qrszoujIuIGYFLtmDsvSpLUTUyfDscdV/RSX3klbOzsL2mOlCmsnwH+RbG6vVBj40iSpI709tuw
++7wzjtw//2w1FJVJ5K6rjI91v3ssZYkqft5+GHYcUfYZhv47W9hnnmqTiR1bWV6rJexx1qSpO7l
oovgm98sWkBOPdWiWqoHe6wlSepBPvwQBg2C0aMdpSfVW5nC+l98ssc6gGxkKEmSVH/PPlu0fvTr
V4zS69276kRS9xKZXbdGjojsyvklSeooN9wA++4LRx9drFhHVJ1I6loigsxs8b+cVlesI+KOWRzO
zNx0jpNJkqQOMXUq/PzncNll8Oc/w/rrV51I6r7KtIL8uNnn8wE7AlMbE0eSJNXLq6/CbrvBXHPB
Aw/AZz5TdSKpe5ujVpCIGJuZX2lAnrbmsBVEkqRZuPNO2HXXov3j5z+HXr2qTiR1bfVqBVms2d25
gHUBNzmVJKkTmj4dfvc7OPlkuOQSGDCg6kRSz1GmFeRB/jsFZCrwPLBPowJJkqQ58/bbsOee8Prr
MHYs9O1bdSKpZ2m1sM7MZTsghyRJaocHHoBvfxu23RauvhrmnbfqRFLP0+LOiwARcVBE9Gl2v09E
/KCxsSRJUhmZcM45RcvHb35T7KJoUS1Vo9WLFyNiXGauMdOxhzNzzYYmK8GLFyVJPdnEiXDAAfDo
o3DNNbDiilUnkrqvMhcvtrpiDcwVEf95XkT0AuYpGWBARDwZEU9HxJGzeLxPRAyLiHERcW9ErFL2
XEmSerLkRPUQAAAgAElEQVTHHoOvfAXmnx/GjLGoljqDMoX1zcDQiPhGRGwGDAX+1tpJtQL8DGAA
sDKwa0R8eaan/RR4sLYivgdwWhvOlSSpR/rDH2CTTeAnP4ELLoAFFqg6kSQoNxXkSGB/4MDa/VuB
C0qc1x94JjOfB4iIocB2wBPNnvNl4ASAzHwqIpaNiM8Cy5c4V5KkHmXSJDj4YLj7brjjDlh11aoT
SWquzFSQacDZtVtbLA2Mb3b/JeCrMz1nHLADMCoi+gNfAD5f8lxJknqMp56CnXeGVVaB+++HhRaq
OpGkmZVpBZlTZa4qPAFYNCIeAgYBDwHTSp4rSVKP8Kc/wYYbwoEHwuWXW1RLnVWZVpA59TLQfDR9
X4qV5//IzPeBvWfcj4jngH8B87d27gxDhgz5z+dNTU00NTW1L7UkSZ3ERx/BIYfA7bfDLbfAWmtV
nUjqOUaMGMGIESPadM5sx+1FxKWZuXtEHJKZp7Y1TETMDTwFfAOYANwH7JqZTzR7ziLAh5k5JSL2
AzbIzD3LnFs733F7kqRu6Zlnig1fVlihuEBx4YWrTiT1bO0dt7dORCwF7B0Ri818a+3NM3MqRXvH
zcDjwJWZ+UREHBARB9SetjLwaEQ8CWwB/LClc1t7T0mSuoOrr4b114d994Urr7SolrqKllasB1NM
Avkixapxc5mZX2xwtla5Yi1J6k4++gh+9CO46Sa46ipYZ52qE0maocyKdZmdF8/JzO/XNVmdWFhL
krqLZ54ppn4stxxceCEsumjViSQ1V5fCuvZCawAbUUzruCszx9UnYvtYWEuSuoMrr4RBg2DIEPjB
DyBa/F+3pCqUKaxbnQoSET8E9gOuAwK4LCLOz8zT6xNTkqSe6cMP4dBD4bbb4OabYe21q04kqT3K
tII8CqyXmR/U7i8IjMnM1TogX4tcsZYkdVUzNnxZaSU4/3wvUJQ6u/ZOBWlu+mw+lyRJbXTFFf/d
8GXoUItqqbsos0HMxcC9ETGjFeRbwEUNTSVJUjc0aRIMHgx33QW33gprrll1Ikn1VPbixXWADfnv
xYsPNTpYGbaCSJK6in/8o2j9WHttOOss6N276kSS2qJuU0E6KwtrSVJnlwkXXQQ/+Qn89rfwve85
9UPqiuoyFUSSJM2Z99+H738fHnkERo6ElVeuOpGkRip78aIkSWqDBx8sdk5ccEG4916LaqknsLCW
JKmOMuH002HAAPjFL+C882CBBapOJakjlNkgZkfgBGAJiqkgAJmZDgeSJKmZN9+EvfaCV16Be+6B
5ZevOpGkjlRmxfpEYNvMXDgze9duFtWSJDVz112w1lqw4opw990W1VJPVObixVcz84mGJ5EkqQua
Ng1+/Ws488xi+sfAgVUnklSVMoX1/RFxJXA9MKV2LDPzusbFkiSp83v5Zdh996Kv+oEHYOmlq04k
qUplWkEWAT4ENge2rt22aWQoSZI6u7/8pZj60dQEt91mUS3JDWIkSWqTyZPhyCNh2DC4/HLYcMOq
E0nqCGU2iGl1xToi+kbEsIh4o3a7NiI+X7+YkiR1Df/8J6y/Prz4Ijz0kEW1pE8q0wpyMXADsFTt
Nrx2TJKkHiET/vAH2GAD2H9/uPZaWGyxqlNJ6mxabQWJiHGZuUZrx6pgK4gkqdHeew9+8INihfrK
K2HVVatOJKkKdWkFAd6MiN0joldEzB0R3wX+XZ+IkiR1XvfeW8ymXmghGDvWolpSy8qsWC8L/B5Y
r3ZoNHBwZr7Y0GQluGItSWqE6dPhxBPhlFPg7LNhhx2qTiSpamVWrJ0KIklSMxMmFLOpP/64mPrR
t2/ViSR1BmUK69luEBMRR2bmbyLi97N4ODNzcLsTSpLUiQwfDvvtV/RU/+xn0KtX1YkkdSUt7bz4
eO3jA0DzZeGY6b4kSV3ahx/CEUcUhfW11xbTPySprWZbWGfm8NqnkzLzquaPRcTODU0lSVIHeewx
2HVXWHnlYvJHnz5VJ5LUVZWZCnJUyWOSJHUZmXDGGbDJJnDYYTB0qEW1pPZpqcd6S2AgsHREnE7R
AgLQG/i4A7JJktQQb7wBe+8Nr74Ko0fDCitUnUhSd9DSivUEiv7qj2ofHwDup9iFcYvGR5Mkqf5u
vRXWXBNWWQXuvtuiWlL9lJljvTDwQWZOq93vBXwqMyd1QL4WOW5PklTW5MnFpI+hQ4vtyb/xjaoT
SepK6rXz4i3A/M3uLwDc1p5gkiR1pCeegPXWg3/9C8aNs6iW1BhlCuv5MnPijDuZ+T5FcS1JUqeW
WeycuNFGxWzq666DT3+66lSSuquW5ljP8EFErJOZDwBExLrAh42NJUlS+7zxBuyzD7z8MowaBf36
VZ1IUndXZsX6EOCqiBgVEaOAK4GDGxtLkqQ5d8stxQWKX/4y3HOPRbWkjtHqxYsAETEv0I9ix8Wn
MrNTjNvz4kVJUnMffQQ/+Umxe+If/gCbblp1IkndRZmLF8u0gkBRVK8MzAesXXvhP7Y3oCRJ9fLo
o7DbbrDSSsUFiostVnUiST1Nq60gETEEOB34PdAEnAhs29BUkiSVNH06nHJKsTp9+OFw1VUW1ZKq
UWbFeidgDeDBzNwrIpYALm9sLEmSWjdhAuy5J7z/PowZA8svX3UiST1ZmYsXP6xtDjM1IhYBXgf6
NjaWJEktGzYM1loLNtgA7rrLolpS9cqsWI+NiD7A+RRbmn8AjG5oKkmSZuP99+GQQ2DEiKK4/trX
qk4kSYUWp4JERAB9M/PF2v3lgIUzc1wH5WuRU0EkqWcZPRp23x2amuDUU6F376oTSeopykwFKVNY
P5qZq9Y7XD1YWEtSz/Dxx/DLX8J55xU7KW6/fdWJJPU07R63l5kZEQ9ERP/MvK++8SRJat0//wnf
/W4x6eOhh2DJJatOJEmzVubixfWAeyLi2Yh4tHZ7pNHBJEk9Wyace25xceIee8BNN1lUS+rcZrti
HRHLZeZzwOZAi8vekiTV06uvwr77FuP0Ro6ElVeuOpEkta6lFetrah8vysznZ751QDZJUg90/fWw
5prFbcwYi2pJXUdLPda9IuJnQL+IOIxPrlpnZp7c2GiSpJ6k+Ri9a68tWkAkqStpacX6/4BpQC+g
N7BQs5sDjiRJdTNqFKyxBkTAww9bVEvqmloctwcQEQMz88YOytMmjtuTpK5tyhQ45hi45BI45xzY
bruqE0nSrLV73B5AZy2qJUld22OPFWP0llmmWKVeYomqE0lS+5QZtydJUt1Mnw4nnQSbbAKDB8Of
/2xRLal7aHXFWpKkennhBfje94ri+r77YLnlqk4kSfVTasU6IlaLiF0i4nsRsUdE7NHoYJKk7iOz
6KNed10YOBDuuMOiWlL30+qKdUQMATYGVgH+CmwJjAL+2NBkkqRu4fXXYf/94bnn4PbbYfXVq04k
SY1RZsV6J2Az4JXM3AtYA1i0oakkSd3CsGHFGL2VVy5aPyyqJXVnZXqsP8zMaRExNSIWAV4H+jY4
lySpC3v33eLCxLvvLjZ7+drXqk4kSY1XZsV6bET0Ac4H7gceAkY3NJUkqcua0e6x4ILFGD2Lakk9
RasbxHziyRHLAQtn5rjGRSrPDWIkqfOYNAmOOgquuw4uuAC22KLqRJJUP3XZIKa5zHyufZEkSd3R
mDHFGL1114VHHoE+fapOJEkdzznWkqQ5NnkyHHssXHQRnHEG7LRT1YkkqToW1pKkOTJuHOyxByy7
bPG5uydK6ulavXgxIr4UEfPVPt8kIgZHhOP2JKmHmjoVjjsONtsMDjsMrr/eolqSoNxUkGuBqRHx
JeBcilF7VzQ0lSSpU3riCdhgAxgxAh58sOirjhYv5ZGknqNMYT09M6cCOwC/z8wfA0uWefGIGBAR
T0bE0xFx5CweXyQihkfEwxHxWETs2eyx5yPikYh4KCLuK/n1SJIaYNo0OOkk+PrXYc894ZZboK87
GkjSJ5TpsZ4SEbsBewDb1I7N09pJEdELOINi18aXKeZh35CZTzR72kHAY5m5TUQsDjwVEZfVCvkE
mjLzrTZ8PZKkOvvXv4piOgLuvReWX77qRJLUOZVZsd4bWB84LjOfi4gvApeVOK8/8ExmPp+ZHwND
ge1mes50YOHa5wsDb9aK6hn8B0ZJqsj06XDmmfDVr8IOOxTtHxbVkjR7ra5YZ+Y/gIOb3X8WOKHE
ay8NjG92/yXgqzM95wxgeERMAHoDOzd/a+C2iJgGnJuZ55d4T0lSHbzwAuy9N3zwQbEteb9+VSeS
pM6vzFSQFSPimoh4PCKeq92eLfHaZbZEHAA8mJlLAWsCZ0ZE79pjG2TmWsCWwEER8fUSrydJaodM
OP/8YqOXb34TRo2yqJakssr0WF8MHAOcDDQBewG9Spz3MsUEkRn6UqxaN7cncDxAZv4rIp4D+gH3
Z+YrteNvRMQwitaSu2Z+kyFDhvzn86amJpqamkpEkyTNbPx42HdfePPNou1jlVWqTiRJ1RkxYgQj
Roxo0zmR2fLCckQ8mJlrR8Sjmbla82OtnDc38BTwDWACcB+wa/OLFyPiLOC1zDw2IpYAHgBWBz4C
emXm+xGxIHALcGxm3jLTe2Rr+SVJLcuESy6BI46AQw4pPs7T6iXqktSzRASZ2eL1f2VWrD+qTfh4
JiIGURTJC7Z2UmZOrT3/ZooV7gsz84mIOKD2+LnAL4FLIuIRigsVj8jMt2oXSF4XxXDUuYHLZy6q
JUnt9/LLsP/+8MorcPvtsPrqVSeSpK6rzIp1f+AJYFGKQnhh4MTMHNP4eC1zxVqS5kwm/PGP8OMf
w6BBcNRRrlJLUkvKrFi3Wlh3ZhbWktR2L78MBxwAL71UtICsuWbViSSp8ytTWJeZYy1J6gZm9FKv
tRZ85Stw330W1ZJUT2V6rCVJXdyMXuqXXy62I7eglqT6KzPH+tMdEUSSVH/NV6n794exYy2qJalR
yqxYj4mIhynmWd9kU7MkdQ3jxxe91K+8ArfeCmusUXUiSereyvRY9wPOB/agGLl3fESs2NhYkqQ5
lQkXXABrrw3rr1/0UltUS1LjtWkqSERsClxGMcf6YeCozBzdoGxl8riALknNvPAC7LcfvPUWXHwx
rLZa1YkkqXuoy1SQiFg8In4YEQ8APwIGAYsDhwNX1CWpJKldpk+Hc86BddeFTTeFMWMsqiWpo5Xp
sR5NsUq9XWa+1Oz4/RFxTmNiSZLKevZZ2HdfmDQJRo6ElVeuOpEk9Uxleqz/X2b+onlRHRE7A2Tm
CQ1LJklq0bRpcNppxbSPrbaCu++2qJakKpXZ0vzBzFx7pmMPZeZaDU1Wgj3WknqqJ5+EffaBXr3g
wgthhRWqTiRJ3VuZHuvZtoJExJbAQODzEXE6MOOFegMf1y2lJKm0qVPhpJPgt7+FY4+FAw+EudxD
V5I6hZZ6rCcADwDb1T7OKKzfAw5tcC5J0kwefRT23hsWXRTuvx+WXbbqRJKk5sq0gsyTmZ1yhdpW
EEk9wZQpcNxxcNZZcPzxRQtItPiPkZKkemtvK8jVmflt4MH43z/BMzNXr0NGSVIL7ruvWKX+4hfh
4Ydh6aWrTiRJmp3ZrlhHxFKZOSEilp3V45n5fONileOKtaTuatIk+PnP4bLL4NRTYZddXKWWpCq1
a4OYzJxQ+/QNYHytkP4UsDrwcr1CSpI+acQIWH11mDCh6Kv+v/+zqJakrqDUuD1gQ6APcDcwFpiS
md9pfLyWuWItqTt591048kj4y1/g7LNhm22qTiRJmqEuW5pTFN+TgB2As2p916vWI6AkqTB8OKy6
KmTCP/5hUS1JXVGZLc2JiPWB7wD71A45NVWS6uD11+GHP4SxY+GPf4RNNqk6kSRpTpUpkA8BjgKG
ZeY/ImJ54I7GxpKk7i2zuDBx9dWhb1945BGLaknq6lrtsf7PEyN6U4zZm9jYSOXZYy2pK3rhhWLH
xJdfLrYjX3fdqhNJklpTlx7riFgtIh4C/gE8HhEPRIQ91pLURtOmwemnwzrrwAYbFLsnWlRLUvdR
psf6POCwzLwDICKaase+1sBcktSt/OMfsO++MM88MGoUrLRS1YkkSfVWpsd6gRlFNUBmjgAWbFgi
SepGJk+GIUOgqQm+971iRrVFtSR1T2VWrJ+LiKOBS4GgmA7ybENTSVI3MHp0sUq9wgpuRy5JPUGZ
DWIWA44FNqgdugsYkplvNzhbq7x4UVJn9N57cNRRMGwYnHYa7LSTOydKUldX5uLFVlesM/Mt4OC6
pZKkbuyGG+Cgg2CLLYq+6j59qk4kSeoorRbWEdEP+BGwbLPnZ2Zu2sBcktSlvPIKDB4M48bBpZcW
PdWSpJ6lTI/11cDZwAXAtNox+y8kiWKjlwsvhJ/+FPbbr9g9cf75q04lSapCmcL648w8u+FJJKmL
eeopOOAAmDQJbrut2EVRktRzlRm3NzwiDoqIJSNisRm3hieTpE5qyhT45S+LTV522AHuuceiWpJU
birI88yi9SMzl2tQptKcCiKpo919N+y/Pyy/PJx5JvTtW3UiSVJHKDMVpNXCujOzsJbUUd55B37y
Exg+vBiht+OOjtCTpJ6kXeP2IuIbmXl7ROzIrFesr6tDRknq1DLh2mvhhz+EbbYpRugtumjVqSRJ
nVFLFy9uBNwObMOsp4BYWEvq1l54oZhJ/dxzcOWVsOGGVSeSJHVmtoJI0kymToXTT4df/xoOPRR+
/GOYd96qU0mSqlSXnRcjog+wB/+7QczgdieUpE7mgQeKixMXXbSY9rHCClUnkiR1FWXmWN8I3AM8
AkwHAjeIkdTNvP8+HH00DB0KJ54Iu+/uxYmSpLYpU1h/KjMPa3gSSarI9dcX25Fvuik89hgsvnjV
iSRJXVGZOdaHAROB4cDkGccz863GRmudPdaS2mP8eDj4YHjySTjnHGhqqjqRJKmzKtNjXWbnxcnA
icAY4IHa7f72x5OkakydCqeeCmutBWuvDePGWVRLktqvTCvIj4AvZea/Gx1Gkhrt/vuLixP79IHR
o2HFFatOJEnqLsqsWD8NfNjoIJLUSO++W7R9bL01HHII3HabRbUkqb7KrFhPAh6OiDv4b4+14/Yk
dQmZcPXVxTzqgQPh8cdhscWqTiVJ6o7KFNbX127NecWgpE7v2WeLnRNfegmuugo22KDqRJKk7syd
FyV1O1OmwO9+ByefXOyaeNhhMM88VaeSJHVl9dp58blZHM7M/OIcJ5OkBhk5Eg48EJZbDsaOLT5K
ktQRyrSCfKXZ5/MBOwGfbkwcSZozr79erE7//e9w2mmw/fbunChJ6litTgXJzH83u72UmacCW3VA
Nklq1fTpcN55sOqqxY6Jjz8OO+xgUS1J6nhlWkHW4b8XK84FrAv0amQoSSrj4YeLto+IYnze6qtX
nUiS1JOVaQU5if8W1lOB54GdGxVIklrz/vtwzDFw2WXw61/D3nvDXGWm8kuS1ECtFtaZ2TTzsYg4
BHiqEYEkaXZmzKQ+7DDYfHP4xz/gM5+pOpUkSYU5GrcXEeMzs28D8rQ1h+P2pB7i6adh0CCYMAHO
Phs23LDqRJKknqTMuD3/8VRSp/bhh0Xbx/rrF6vUDz5oUS1J6pzK9FhLUiVuugkOPhjWWqu4UPHz
n686kSRJszfbwjoiJjL7rcsXaEwcSYIXX4RDDoFHHoEzzoABA6pOJElS62bbCpKZC2Vm79ncHLcn
qe6mTIHf/AbWXhvWXBMee8yiWpLUddgKIqlTuOMOOOigYgvye++F5ZevOpEkSW1jYS2pUq+8Aj/6
EYwaVWxFvt127pooSeqanAoiqRIffwynnFLslviFLxRbkX/rWxbVkqSuyxVrSR3uzjuLto8llyxW
qvv1qzqRJEntZ2EtqcO8+ir8+McwciScfDLsuKMr1JKk7qOhrSARMSAinoyIpyPiyFk8vkhEDI+I
hyPisYjYs+y5krqOqVOL/unVVitmUT/+OOy0k0W1JKl7maMtzUu9cEQv4ClgM+BlYCywa2Y+0ew5
PwV6Z+ZREbF47flLUMzPbvHc2vluaS51cnfeWWxF/tnPwu9/D1/+ctWJJElquzJbmjeyFaQ/8Exm
Pl8LMxTYDmheHE8HFq59vjDwZmZOjYj1S5wrqRObMAGOOKIorG37kCT1BI1sBVkaGN/s/ku1Y82d
AawcEROAccAP23CupE7o44/hpJOKaR/LLANPPGHbhySpZ2jkinWZHo0BwIOZuUlELA/cGhFrtOVN
hgwZ8p/Pm5qaaGpqasvpkurojjuKto++fWH0aFhxxaoTSZI0Z0aMGMGIESPadE4je6zXA4Zk5oDa
/aOA6Zn5m2bP+QtwfGbeXbt/O3AkRcHf4rm14/ZYS53A+PHFJi/33lvMpnYetSSpuynTY93IVpD7
gRUiYtmImBfYBbhhpue8SHGBIhGxBNAPeLbkuZIqNnkyHH88rLkmrLRSMe1j++0tqiVJPVPDWkFq
FyEOAm4GegEXZuYTEXFA7fFzgV8Cl0TEI0AAR2TmWwCzOrdRWSW13U03weDBsPLKMHYsfPGLVSeS
JKlaDWsF6Qi2gkgd79ln4dBDi9Xp006DgQOrTiRJUuNV3QoiqRuZNAmOPhr694evfhUee8yiWpKk
5tzSXFKLMuGaa4qLE7/2NXj44WL3REmS9EkW1pJm67HHij7qf/8b/vhH2HjjqhNJktR52Qoi6X+8
8w788IewySawww7w4IMW1ZIktcbCWtJ/TJsG559fjM778MPiAsVBg2Bu/21LkqRW+b9LSUCxU+LB
B8P888ONN8Laa1edSJKkrsXCWurhJkyAI48stiM/8UTYdVc3eJEkaU7YCiL1UJMnw29+A6uvDn37
wpNPwm67WVRLkjSnXLGWephMGD4cDjsMVlkFxoyBL32p6lSSJHV9FtZSD/LEE3DIITB+PJx5Jmyx
RdWJJEnqPmwFkXqAd94ptiHfaCPYcksYN86iWtL/b+/ew+2a732Pv78ibiFCOVX3TSVbE9Slrk2l
6rjUfSdKRLXOqVOlx+l2j4SEinBit7p1VylFo+4aLS2NWy50tylycYlUVWyXFEXiEick63v+GCMs
y0qyEnOtMeda79fzrCdjjjnGmN8s03w++c3v+P0k1ZrBWurEFi2CK64ops+bP7+YPu9734Pu3auu
TJKkzsdWEKmTmjixWOSlZ0+46y7YfvuqK5IkqXMzWEudzOzZcPrpMGUKjBkDgwY504ckSR3BVhCp
k3jnHTj7bNhpJ9hmm+JGxcMPN1RLktRRDNZSg2tqguuuK/qon30Wpk0rAvbqq1ddmSRJXYutIFID
++Mfi5sRm5rgpptg992rrkiSpK7LEWupAT3/PAwZUvRPn3BCEbAN1ZIkVctgLTWQ+fPh3HPh85+H
LbYoliE/5hhYyf+TJUmqnK0gUgNoaoIbboChQ2G33eDRR2GzzaquSpIkNWewlurc4j7qhQvhl7+E
/v2rrkiSJLXGL5ClOrW4j3rgQPjOd4p5qQ3VkiTVL4O1VGfeeQdGjPiwj3rWLPjGN+yjliSp3tkK
ItWJpiYYOxaGDStGpqdOhU03rboqSZLUVgZrqQ5MmgT/+q/QvTvccktxg6IkSWosBmupQs88A6ef
Dg8/DBdeCEce6RLkkiQ1Krs2pQrMmwennQa77AI77ljMRz14sKFakqRGZrCWOtD778N//Af07g1v
vAGPPw5nnQWrr151ZZIk6ZOyFUTqAJnwu9/BqafCRhvB+PGw3XZVVyVJkmrJYC21s+nT4ZRT4MUX
4eKL4atfteVDkqTOyFYQqZ3MmQPf+hbssw8cdhjMmAEHHGColiSpszJYSzX2zjtw3nnQrx+ss06x
wMuJJxZT6UmSpM7LYC3VyKJFcPXV0KcPPPlkMYXemDHQq1fVlUmSpI5gj7VUA/fdV9yYuPrqcOut
sOuuVVckSZI6msFa+gSefLJY4GXmzGKBl0GD7KGWJKmrshVEWgEvvwzHHw8DBsBeexUB+/DDDdWS
JHVlBmtpOcyfD+efD337Qo8exYqJJ58Mq65adWWSJKlqtoJIbbBoEYwdC8OHwx57wJQpsMUWVVcl
SZLqicFaWobx44s+6jXX9MZESZK0ZAZraQmmTy8C9bPPFjcmHnaYPdSSJGnJ7LGWWnjhBfjmN2Hf
feHgg+GJJ+Bf/sVQLUmSls5gLZXefBPOOgu22w422gj+8hdXTJQkSW1nsFaX9957cOmlsNVW8NJL
MG0ajBoFPXtWXZkkSWok9liry8osbkYcOrQI1ffcA9tuW3VVkiSpURms1SVNmgSnnQbvvw8//Sns
vXfVFUmSpEZnsFaXMnMmnHlmMePHqFEweDCsZEOUJEmqASOFuoSXXoLjjoMvfQn69y9WTBwyxFAt
SZJqx1ihTm3ePBg2DLbZBtZdt5jp49RTYbXVqq5MkiR1NgZrdUoLFsCPfgS9e38408dFF8E661Rd
mSRJ6qzssVan0tQEN91UjFJvvTXce28xWi1JktTeDNbqNO65B844A1ZeGa66Cr785aorkiRJXYnB
Wg3vkUeKQP1f/wUXXAADB7r8uCRJ6nj2WKthPfMMHHkkHHQQDBoETzxR/GmoliRJVTBYq+H8/e9w
4omw887Qrx88/TQcfzx07151ZZIkqSszWKthvPkmnHMO9O0Lq6xSzEU9fDj06FF1ZZIkSQZrNYAF
C+CSS2CrreC554qe6h/+ENZfv+rKJEmSPuTNi6pbixbB9dcXo9T9+jl1niRJqm8Ga9WdTLjzTjjr
LOjZE669tliKXJIkqZ4ZrFVXHnwQzjwT5s6F0aPhwAOd5UOSJDUGg7XqwowZxQj1E0/AuefCkCHQ
rVvVVUmSJLWdNy+qUs88A0cfDfvsU/w89RQcc4yhWpIkNR6DtSoxZw6ccALssgv07l3MRX3SSbDq
qlVXJkmStGIM1upQb7xR9FD37QtrrFGMUJ9zDqy1VtWVSZIkfTLtGqwjYr+IeCoino6IM1p5/tSI
mDs12xAAABFiSURBVFr+PBYRCyOiV/nc7IiYUT43pT3rVPt7553iZsTeveG112D6dLj4Ylhvvaor
kyRJqo3IzPa5cEQ3YBawN/Ai8GdgcGbOXMLxBwLfy8y9y8fPAjtm5utLeY1sr/pVG++9B1dcAaNG
wRe/COefD336VF2VJEnS8okIMnOpc5W156wgOwN/zczZZTE3AocArQZr4Cjghhb7nGitQS1aBNdd
ByNHwj//M/z2t7DDDlVXJUmS1H7aM1hvBDzf7PELwC6tHRgRawD7Aic0253AvRGxCLg8M3/WXoWq
djJh3DgYPhzWXdfFXSRJUtfRnsF6eXo0DgIezMy5zfbtkZlzImJ94J6IeCozJ7c8ceTIkR9sDxgw
gAEDBqxgufokMuGee2DYMFi4sOif3n9/F3eRJEmNacKECUyYMGG5zmnPHutdgZGZuV/5eCjQlJkX
tXLsOOCmzLxxCdcaAbydmf/WYr891nXgoYeKQD1nDpx3Hhx+OKzkfDOSJKkTaUuPdXvGn4eBrSJi
84hYBTgC+E3LgyJibeBLwK+b7VsjItYqt3sA+wCPtWOtWgFTp8IBB8BRR8E3vlGsmnjEEYZqSZLU
NbVbK0hmLoyI7wK/B7oBV2XmzIj4dvn85eWhhwK/z8x3m53+aWBcFH0EKwO/zMzx7VWrls+sWcXc
05MmFcuQ/+pXLuwiSZLUbq0gHcFWkI717LNFq8edd8LJJxcrJfboUXVVkiRJ7a/qVhB1Ei+9VCw/
vtNOsOmmxfLjQ4caqiVJkpozWGuJXn0VTjkF+vUrQvSsWXDuudCrV9WVSZIk1R+DtT5m7lw4++xi
YZcFC4qbEseMcflxSZKkpTFY6wNvvVUsOb7VVsXUeY88Aj/+MXzmM1VXJkmSVP8M1mL+/GJBl89+
Fp56Cv7wB7jySth886orkyRJahztufKi6tyCBXDFFTB6NOy+O9x/P/TtW3VVkiRJjclg3QW99x5c
fTWMGgXbbltMn7fDDlVXJUmS1NgM1l3IwoUwdix8//tF28fNN8Ouu1ZdlSRJUudgsO4CFi2CG28s
psrbcEO49lro37/qqiRJkjoXg3Un1tQEt90GI0fC2mvDZZfBXntBLHXNIEmSJK0Ig3UnlAm33w4j
RsBqqxUzfuy3n4FakiSpPRmsO5HM4kbEESOKxxdcAAccYKCWJEnqCAbrTiAT7r67CNQLFhS91Icc
YqCWJEnqSAbrBpYJ48cXgfqtt4pe6oEDYSWX/ZEkSepwBusGlAn33VcE6tdfL/48/HDo1q3qyiRJ
kroug3WDeeABOOcceOWVIlAfcYSBWpIkqR4YrBvEhAlFq8eLLxbBevBgWNn/epIkSXXDaFbnJk4s
AvXzz8PZZ8OQIQZqSZKkemREq1OTJhWB+rnnikB99NEGakmSpHpmVKszkycXgXr2bBg+vAjU3btX
XZUkSZKWxWBdJ5qPUA8bBl//uoFakiSpkRisKzZxYrGgy3PPOUItSZLUyAzWFWl+U+Lw4cVNiQZq
SZKkxmWw7kCZxTzU555bTJvnLB+SJEmdh5GuA2TCvffCeecVC7sMH+481JIkSZ2N0a4dZcL48cUI
9euvFyPURx7pSomSJEmdkcG6HWTCXXcVI9RvvlkE6q99zUAtSZLUmRmsaygT7rijCNQLFhSBeuBA
A7UkSVJXYLCugaYmuP12+P73i8dnnw2HHgorrVRtXZIkSeo4ButPYNEiuO02OP98WHXVYqT6wAMh
ourKJEmS1NEM1itg4UK48UYYNQp69YILL4T99zdQS5IkdWUG6+Xw/vswdiyMHg0bbgiXXgpf+YqB
WpIkSQbrNlmwAK65phiZ3nJLuPJK2HPPqquSJElSPTFYL8W778LPfgZjxkC/fnD99bDbblVXJUmS
pHpksG7F22/DZZfBD34Au+4K48bBTjtVXZUkSZLqmcG6mXnzir7pf/932GuvYtXEbbapuipJkiQ1
AmdaBv7xj2Lu6S23hKefhsmTi1k/DNWSJElqqy4drOfMgVNOgd694ZVXYMoUuPZa6NOn6sokSZLU
aLpksH7uOTjxROjbt1jkZcYMuPxy2GKLqiuTJElSo+pSwXrWLDj2WNhhB+jZE556Ci65BDbeuOrK
JEmS1Oi6xM2L06fDBRfA/ffDd79b9FGvu27VVUmSJKkz6dQj1n/8Ixx0ULHc+Be+AH/7G4wYYaiW
JElS7XW6EevMYmR61KgiSJ9+OtxyC6y2WtWVSZIkqTPrNMG6qQnuvLMI1PPmwZlnwpAh0L171ZVJ
kiSpK2j4YL1wIdx8M4weXYToYcPg0EOhW7eqK5MkSVJX0vDBuk8f2GgjGDMG9t0XIqquSJIkSV1R
ZGbVNaywiMhJk5L+/auuRJIkSZ1ZRJCZSx3Cbfhg3cj1S5IkqTG0JVh36un2JEmSpI5isJYkSZJq
wGAtSZIk1YDBWpIkSaoBg7UkSZJUAwZrSZIkqQYM1pIkSVINGKwlSZKkGjBYS5IkSTVgsJYkSZJq
wGAtSZIk1YDBWpIkSaoBg7UkSZJUAwZrSZIkqQbaNVhHxH4R8VREPB0RZ7Ty/KkRMbX8eSwiFkZE
r7acK0mSJNWTdgvWEdEN+DGwH/A5YHBEbN38mMy8ODO3z8ztgaHAhMyc25ZzpSWZMGFC1SWoDvm+
UGt8X6g1vi+0otpzxHpn4K+ZOTsz3wduBA5ZyvFHATes4LnSB/xAVGt8X6g1vi/UGt8XWlHtGaw3
Ap5v9viFct/HRMQawL7Abct7riRJklQP2jNY53IcexDwYGbOXYFzJUmSpMpFZvtk2IjYFRiZmfuV
j4cCTZl5USvHjgNuyswbl+fciDCAS5IkqUNkZizt+fYM1isDs4CvAC8BU4DBmTmzxXFrA38DNs7M
d5fnXEmSJKlerNxeF87MhRHxXeD3QDfgqsycGRHfLp+/vDz0UOD3i0P10s5tr1olSZKkT6rdRqwl
SZKkrqRhV150ARm1FBE/j4iXI+KxqmtR/YiITSLigYh4IiIej4iTqq5J1YuI1SLiTxExrXxfjKy6
JtWHiOhWLlx3R9W1qD5ExOyImFG+L6Ys9dhGHLEuF5CZBewNvAj8GXuwu7yI6A+8DfwiM7epuh7V
h4jYANggM6dFxJrAI8Chfl4oItbIzPnlfT0PAv8nM/9UdV2qVkScDOwIrJWZB1ddj6oXEc8CO2bm
68s6tlFHrF1ARh+TmZOBN6quQ/UlM/+emdPK7beBmcCG1ValepCZ88vNVYDuQFOF5agORMTGwFeB
K4Glzv6gLqdN74dGDdYuICNpuUXE5sD2gKOSIiJWiohpwMvA+Mz8c9U1qXI/BE7Df2TpoxK4NyIe
jojjlnZgowbrxutfkVSpsg3kVoqv+9+uuh5VLzObMvPzwMbALhHRt+qaVJ2IOBB4JTOn4mi1PmqP
zNwe2B84sWw9bVWjBusXgU2aPd6EYtRakj4mIroDtwHXZebtVdej+pKZ84AHgP2qrkWV2h04uOyn
vQHYKyJ+UXFNqgOZOaf881VgHEVLcqsaNVg/DGwVEZtHxCrAEcBvKq5JUh2KiACuAp7MzEuqrkf1
ISLWi4he5fbqwH+n6L9XF5WZZ2XmJpn5T8CRwP2ZeUzVdalaEbFGRKxVbvcA9gGWOPtYQwbrzFwI
LF5A5kmK5dD9QOziIuIG4A9A74h4PiKOrbom1YU9gKOBL5dTJU2NCEcm9Rng/oiYTrG67/jM/F3F
Nam+2HYqgE8Dk8v7Mf4E3JmZ45d0cENOtydJkiTVm4YcsZYkSZLqjcFakiRJqgGDtSRJklQDBmtJ
kiSpBgzWkiRJ6tQi4ucR8XJELHGqvGbHbhYR90XE9Ih4ICLavLq3wVqSJEmd3dW0fRGoi4FrMnM7
4DxgdFtfxGAtScsQEYdGRFNE9Knxdb8XEV8vtydExI6tHHNQRJxRbo+MiFPK7WsiYmC5/bOI2LqW
tbVFRIyJiMcj4qKOfu0WddyzeLEXSWpNZk4G3mi+LyK2jIi7IuLhiJjU7DN+a+D+cnsCcEhbX8dg
LUnLNhiYXP5ZExGxMnAs8MtyV6uLCmTmHZl5UbNjsuV2Zh5X0SJZxwHbZOYZ7f1C5e9rScYCJ7R3
DZI6nSuA/52ZOwGnAT8p908HBpbbhwFrRcQ6bbmgwVqSliIi1qRYvfFbFMscL94fEfGTiJgZEeMj
4rfNRpB3LEegH46IuyNig1YuvRfwaGY2Ndv39XJlyMci4gvltb4ZEZc2L6mVGj8Y7Y6IwRExo7zG
hc2OeTsizo+IaRHxnxHx38r9h5fHTouIiUv4HYwpj5kREV8r9/0GWBN4dPG+cv9KEfGXiFiv2eO/
RsSnImL9iLg1IqaUP7uXx+wcEX+IiEcj4qGI6N3s7/6biLgPuCciNihHlRb/jr5Yvuwd1PAfPZI6
v/KzfTfgloiYCvwUWPxZfSqwZ0Q8CnwJeBFY1JbrLm0EQJJUfAV4V2Y+HRGvRcQOmfkoxWjGZpm5
dUR8GpgJXBUR3YFLgYMy87WIOAIYBfzPFtfdA3i4xb7VM3P7iOgP/BzYpo01JpARsSFwIbADMBcY
HxGHZOavgTWA/8zM4WXrxnFlXWcD+2TmnIjo2fLC5T8WtgO2BdYH/hwREzPz4Ih4KzO3/0ghmU0R
cR0wBPgRsDcwtfxdXA/8MDMfiohNgbuBz5W/u/6ZuSgi9gYuAAaVl9yeYlR8btkGc3dmXhARAfQo
X/ONiFg1ItbJzI981StJS7ASMLflZxhAZs6hHLEuA/jAzHyzrReVJC3ZYOCmcvsmPhwZ3QO4GSAz
XwYeKPf3AfoC95ajIMOA1u4o3wD4R4t9N5TXmwz0jIi1l6POAL4ATMjM1zJzEUWbyZfK59/LzN+W
248Am5fbDwHXRsS3aH2wZQ/g+iy8AkwsX2dpfg4cU27/D4qbhqAI2T8ufy+/pvh6dQ2gF3BrFHfr
/4AibC82PjPnlttTgGMjYgSwbWa+3ey4V4ANl1GXJAFQBuVnI2IQfPAt5Lbl9qciYnFGHgpc1dbr
OmItSUsQEesCXwb6RUQC3YAmil48aKUto/REZu6+jMu/C6y2jGOaWtnXai/2Ep6LZvveb3HdlQEy
8zsRsTNwAPBIROyYma+3cp3WtlsvIvOFKKa12osihC/+x0gAu2Tmex+5eMRPgPsy87CI2IziZqHF
5je77uRyNP9A4JqI+EFmji2fXo3idypJHxMRNwB7AutFxPPAORTfrF0WEcOB7hSDGzMoPvcvKD/3
JwIntvV1HLGWpCUbBPwiMzfPzH/KzE2B2WW4ewgYWI5yfBoYUJ4zC1g/InYFiIjuEfG5Vq49E/hs
s8cBHFGe80WKryjfanFOsORgmxQjunuWoy3dKHrCW+2b/uCCEVtm5pTMHAG8Cmzc4pDJwBFlr/T6
QP/ydZblSuA64ObMXBzuxwMnNXvt7crNnsBL5faxS6l1U+DVzLyyvP4O5f6g+AZgdhvqktQFZebg
zNwwM1fJzE0y8+rMnJ2Z+2fm5zOzb2aeXx57a2b2zsw+mfm/MvP9ZV1/MYO1JC3ZkcC4FvtuK/ff
BrwAPEkxK8WjwLzyA3gQcFFETAOmUtwg09JdfNimAUUw/n/lzTI/4cOe7FZnAmlNZv4dOJOiLWUa
8HBm3tHs3Oavtfjx/118syPwUGbOaHHNcRQjONOB+4DTypaQltds6Q6KHuirm+07CdgpikUXngC+
vbgGYHT5d++2lL/vAGBaedzXgEvK/TtS9I+3NsIvSR0mPhxIkCQtj4jokZnvRMSngD8BuzcLnW05
/1fA6Zn513YrsiIRsRPwb5m5Zwe81iXArzPzgWUeLEntyB5rSVpxd0axMMkqwHnLE6pLZwKfATpV
sI6IM4HjgaM66CUfN1RLqgeOWEuSJEk1YI+1JEmSVAMGa0mSJKkGDNaSJElSDRisJUmSpBowWEuS
JEk1YLCWJEmSauD/A7D1F+YU1jbWAAAAAElFTkSuQmCC
"
>
</div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered">
<div class="prompt input_prompt">
</div>
<div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<h3 id="problem-2-">Problem 2.</h3>
<p>What was initially just a simple file IO example was complicated by
some interesting encoding issues. The Vostok ice core data was
unreadable with UTF-8. So I opened the file in Firefox - some of the
scientists' names were rendered improperly. I played with the encoding
until it worked - unfortunately it was just listed in Firefox as
"Western." I then looked up what possible encodings I could use and
used the one labeled "Western Europe."</p>
<p>Additionally the C CSV parsing engine was having issues using the
<code>delim_whitespace</code> option, so I had to specify the Python engine
instead. Fortunately this dataset was pretty small (about 3000 lines)
so the speed hit wasn't really important.</p>
<p>I thought that having a line connecting the data points hid the
decrease in data density as ice age increases, so I made it with
points instead.</p>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">
In [3]:
</div>
<div class="inner_cell">
<div class="input_area">
<div class="highlight"><pre><span class="k">def</span> <span class="nf">problem2</span><span class="p">():</span>
<span class="n">vostokT</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">read_csv</span><span class="p">(</span><span class="s">"data/Chapter1Data/iceCores/vostokT.txt"</span><span class="p">,</span>
<span class="n">skiprows</span><span class="o">=</span><span class="mi">115</span><span class="p">,</span>
<span class="n">encoding</span><span class="o">=</span><span class="s">'iso8859_15'</span><span class="p">,</span> <span class="c"># "Western" encoding</span>
<span class="n">delimiter</span><span class="o">=</span><span class="s">'\s'</span><span class="p">,</span>
<span class="n">engine</span><span class="o">=</span><span class="s">"python"</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">figure</span><span class="p">(</span><span class="n">figsize</span><span class="o">=</span><span class="p">(</span><span class="mi">12</span><span class="p">,</span><span class="mi">8</span><span class="p">))</span>
<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s">"Temperature change vs. ice age"</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">vostokT</span><span class="o">.</span><span class="n">corrected_Ice_age_GT4</span><span class="p">,</span> <span class="n">vostokT</span><span class="o">.</span><span class="n">deltaTS</span><span class="p">,</span>
<span class="n">marker</span><span class="o">=</span><span class="s">"."</span><span class="p">,</span> <span class="n">linestyle</span><span class="o">=</span><span class="s">"none"</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">xlabel</span><span class="p">(</span><span class="s">"Ice age (years)"</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">ylabel</span><span class="p">(</span><span class="s">"Temperature difference from present (C)"</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">figure</span><span class="p">(</span><span class="n">figsize</span><span class="o">=</span><span class="p">(</span><span class="mi">12</span><span class="p">,</span><span class="mi">8</span><span class="p">))</span>
<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s">"Depth vs. ice age"</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">vostokT</span><span class="o">.</span><span class="n">corrected_Ice_age_GT4</span><span class="p">,</span> <span class="n">vostokT</span><span class="o">.</span><span class="n">Depth</span><span class="p">,</span>
<span class="n">marker</span><span class="o">=</span><span class="s">"."</span><span class="p">,</span> <span class="n">linestyle</span><span class="o">=</span><span class="s">"none"</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">xlabel</span><span class="p">(</span><span class="s">"Ice age (years)"</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">ylabel</span><span class="p">(</span><span class="s">"Ice core depth (m)"</span><span class="p">)</span>
<span class="n">problem2</span><span class="p">()</span>
</pre></div>
</div>
</div>
</div>
<div class="output_wrapper">
<div class="output">
<div class="output_area"><div class="prompt"></div>
<div class="output_png output_subarea ">
<img src="
AAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xt4XNV5L/7vq5ttyZZHtuTaxrYw4NhAMBaWgQAJSoOb
4JDabao2cdrE5BzPKe2v4bSJ1aSnp6G/hp7koe0v6SXpL+kJJG2UNubEpA6hBdfYAXOLKdgECAoG
xFUY25JvGF/X+eOdxV4zmssezezLzP5+nmcezU2jJe2tvd+91rveJcYYEBERERFRNBqibgARERER
UZIxICciIiIiihADciIiIiKiCDEgJyIiIiKKEANyIiIiIqIIMSAnIiIiIooQA3IiojohImdE5Jyo
2xE2EXm3iPws6nYQEU0UA3IiCo2IHBGRw5nbGRF503n80ajbNxEi8oKI/GLU7UgyY8x9xpglUbeD
iGiimqJuABElhzFmqr0vIs8D+C/GmK0RNqkoEWk0xpwu8TYDQAL+GUREVMfYQ05EkRORBhH5rIg8
KyL7RORfRKQj89rZmd70dSLyoogcEJH/JiIrRGS3iIyKyN84n7VORHaIyN+IyJiIPO32YIvIdBH5
3yLyqoi8LCJ/JiINOd/7VyKyD8DnReQcEdmaadcbIvJPIjI98/5/BLAAwOZML/9nRKRPRF7K+f3e
7kUXkZtE5HYR+UcROQjgE8XaVOBv9UeZv9UhEdkpImc5b1kpIkOZv8vfOt93bqHfw2njp0VkV+bv
9s8iMsl5fcBp339102NEZJKI/IWIDIvIiIh8TUQm52n7pMxnX+g815UZKenM3H6Yaft+EfmxiJS8
2Mn9m4vIfBH5vojszfy+7v7xSRF5KrMf/ZuILCjyuRtF5LVMm7eLyAXOazNFZLOIHBSRR0TkCyJy
n/P6EhG5J/N7/ExE+kv9HkSUXAzIiSgOfg/ALwN4D4A5AEYB/F3Oey4FcB6A3wDwFQCfA/CLAC4E
8Osi8p6c9z4LYCaAzwP4voikMq/dBuAEgHMB9AD4JQD/Ned79wCYBeDPob3fN2fadT6A+QBuAgBj
zG8BeBHAdcaYacaYvyjw+5mcx78MYKMxZjqAQR9tcn0awEcAXGuMaQfwSQDHnNc/CKAXwNLM3+X9
zmt5fw+njf0A3g9gYeb71wGAiHwAwO8DeB+ARQD6ctr0Rei2uTjz9SwAfzLuj2DMcQD/B4CbnvTr
ALYZY/ZlfreXAHRC//6fM8bk/u2KEpFGAD8E8DyA7kxb/jnz2mrofvMrmZ9xH4DvFvm4OzO/TxeA
/wTwHee1vwNwGMAvAPgEgI8js51FpA3APQD+KfO9HwHwVRE5v5zfhYgSxBjDG2+88Rb6DRow/WLm
/lP2fubxHGiA2gDgbABnAMxxXt8HoN95fDuAGzP31wF4JednPQzgN6HB01sAJjuvfRTAVud7h0u0
ew2A/8z3e2Qe9wF4qcjvehM0ALWvFW1Tnp//MwAfKvDaGQBXOI//BcAflvF7rHUefwnA1zL3vwng
Zue1czM/6xzoBcsRAOc4r78LwHMFfu77ADzrPN4B4Dcz9/8UwB0Azi1zX3r7b5752XsBNOR5310A
Puk8bgBwFMB8Hz8jlfmdpwFozOyfi5zX/wzAfZn7vwHgxznf//8D+JMo/td44423+N+YQ05EcXA2
gE0icsZ57hQ0WLVed+4fy/O4zXn8Ss7nDwOYC00vaQbwmpMJ0QDt5bZy001+AdojfxU0GGsAcKDU
L1TCy879bh9tcs2H9uAXMuLcfxPAVMD37+F+7zHohREyXx8p0P4uAK0AHnXaLyg8ArsNQKuIXAoN
nC8GsCnz2i3QC5a7M5/1dWPMlwp8TiHzoRdVZ/K81g3gKyLylznPn4Xx270BOkLya9Df8Qy0B7wT
+rdpyvme3G16mYiMOs81Afh2mb8LESUEA3IiioMXAVxvjHkw9wUROXsCn3dWzuNuAD+ABlDHAcws
ELAB49NL/hzAaQDvNMaMicgaAH9T5P1HoQEqgLdTKLqK/Aw/bXK9BE2jeMrHe92fVer3KOY1aKBr
uff3QQPUC4wxr5VsjDGnReR70FGAvQA2G2OOZl47AuAzAD6TyTPfKiI/MeVN/H0JwALJP1n2RQB/
ZowplqZifQyaWvQ+Y8xwJuXpAPRi4w3oBeN8AD/PvN/9m7wIYLsx5pfKaDcRJRhzyIkoDv4ewJ/b
CXaZiX6/XOZnuJP/ZonIp0SkOTOZbgmAHxljRgDcDeCvRGRaZoLkuTn557mmQoPsQ5nJkxtyXn8d
msJhDQGYLCKrRKQZwB8DmIQCMkFsOW36BwB/JiLniVoqIjMKvNf9m5T6PYp9//cAXJ+ZqNgK4H86
7T8D4BsAviwiXQAgImeJSLFgdBCaV702cx+Z7/ug/b0AHIJeQJRbgeYR6AXEF0WkVUQmi8gVmdf+
HsAf2cmZopNpC022nAq9UDqQyQn/c+d3Pg3g+wBuEpEpIrIEwG/Bu/i5E8A7ROQ3M/tgs+gkZJZm
JKK8GJATURx8BcC/QlMVDgF4EDq50vIzsc99z8PQyYdvQHN7P2yMsekDHwfQAu1hPgBgI4DZzmfk
/qw/BXAJgIMANkMnJbrv+V8A/jhTGeQPjDEHAfwONHB+GZpf7aY25PsZxdqU66+gAfLdmTZ9A4Ct
aJL7ue7jUr9HrrfbaYz5NwB/DeBe6AWHHck4nvn6h9BJtA+JVo65B8A7Cn6wMY9A/y5zoHnd1qLM
9x4G8ACAvzPGbAcAEfmRiHy2RHttsPwh6CjCi9C//a9nXrsDmhv/z5l2PgGdxJrPt6GpTq8A+Gnm
d3b/Xv8PgOnQNJ9vQSeHnsj8nMPQibkfyXz/a9D9pKVI+4kowcSYsiawhyYzzLsTwMvGmA9F3R4i
qg0isg5a3/zdUbelXmWqhTwBoMVnmk3dE5EvAZhljLk+6rYQUe2Jcw/5jdDeonheMRARJYiI/Ipo
HfEOaC/zvyY5GBeRxZl0IclMUP0kvMmpRERliWVALiLzAKyCDvlOeAU8IkqkfCkhVLk0NF/+WQAn
AdwQbXMiNw2a9nMEWuf8L4wx/xptk4ioVsUyZUVENkIn0LQD+AxTVoiIiIioXsWu7KGIXAdgrzHm
MRHpK/Ce+F1FEBEREVFdMsYEmrERx5SVKwD8sog8D521/osiMm4xhahXVKqV2+c///nI21ALN/6d
+Lfi34l/p7jf+Lfi34l/q2huYYhdQG6M+SNjzHxjzEJoyaitxpiPR90uIiIiIqIgxC4gz4PpKURE
RERUt2KXQ+4yuiDE9qjbUcv6+vqibkJN4N/JP/6t/OHfyR/+nfzj38of/p38498qPmJZZaUUETG1
2G4iIiIiqi0iApPASZ1ERERERInBgJyIiIiIKEIMyImIiIiIIsSAnIiIiIgoQgzIiYiIiIgixICc
iIiIiChCDMiJiIiIiCLEgJyIiIiIKEIMyImIiIiIIsSAnIiIiIgoQgzIiYiIiIgixICciIiIiChC
DMiJiIiIiCLEgJyIiIiIKEIMyImIiIiIIsSAnIiIiIgoQgzIiYiIiIgixICciIiIiChCDMiJakQ6
DfT1AatWAWNjUbeGiIiIqoUBOVGNGBoCtm8H7rpLg3MiorCxY4AoGE1RN4CI/Glt1a9TpwKjo3oy
TKWibRMRJcvmzcDIiN5ftw64445Im0NUN8QYE3UbyiYiphbbTVSJsTFg0SJg3z593N8PfO970baJ
iJJlxgztEACAWbOAZ55hxwDVPxGBMUaC/BlMWSGqEakUsGKF3u/tBb7+9WjbQ0TJs3y5d3/vXqbP
EVULA3KiGvLss0BTE/D888DBg1G3hoiSZnjYu790KTsGiKqFATlRDdm7Fzh1Cti/H7jqqqhbQ0RJ
s3evd3/fPqarEFULA3KiGtLcrF9bW4H774+2LUSUPO4x6IEHom0LUT1hQE5UQ3buBObNA556Cuju
jro1RJQ0O3dqMH7RRcANN7D0IVG1sMoKERER+dbXp2siAKz2RMnAKitEREQUK3ZNBFZ7Iqoe9pAT
ERGRb2NjWu7w61/npE5KhjB6yBmQExERUUnpNDA0BOzZA5w8CZw4oXXJN25kYE71jQF5AQzIiYiI
wjVnDjAyMv555pFTvQsjIG8K8sOJqHrc3qnubqC9HRgcZM8UEYXj+PHxz/X0MI+cqBoYkBPViKEh
r7LByy/r13SaPVNEFI7ly4EtW7Tk4fz5QEsLcOut7BQgqgamrBDFnO0Zf+gh7aFqatLVOnt7gXvu
4cmQiMLByZyUVMwhL4ABOSWJW/PXamnRIJ2LAxEREQWLOeRE9HbNX9eJE8CGDUxXIaLw2NG61lag
qwsYHtb7nMtCVDn2kBPFnB0m3rIFGB3V55Yu1V5zngSJKCzuaF1nJ7Bvn95nlRWqd1ypk4iQSunJ
7rHHgLlzgVWrGIwTUfjcFTqXLfPus8oKUeUYkBPViJtvBhYtAjg4RERRGBzU3vB77tHFgOx9dg4Q
VY4pK0Q1wh0u5hAxERFROJiyQkRIp3WFvB//WB83NQEvvqipK2Nj0baNiIiIKseAnCjmhoZ0uWo7
KHTqFPDww8Bdd2mwTkRERLWNATlRzOUrewhwyWoiIqJ6wYCcKOYGB/M/v2ABJ1MRERHVA07qJKoB
kjOVZNo04IknuFInERFR0Dipk4gAAA05/6mHD+tKnUREUUintfITJ5cTVQcDcqIa0Nyc/ZiLcRBR
lIaGtAwrJ5cTVQcDcqIa0N7u3Z87l4txEFG03FU72TlAVDkG5EQ14NQp7/6BA8B113GomIii467a
yc4BospxUidRDWhrA958c/zzXLGTiIgoWGFM6mRATlQDpk8HDh3Kfo6VVihK6bTmEbe2am8pe0nr
G7c3JRmrrBARAKClZfxzhw8DN94YfluIAE7qSxpub6JgMSAnqgHXXJP/+dz65ERh4aS+ZOH2JhfL
XlZfLANyEZkvIveKyJMi8lMR+VTUbSKK0muvjX/uwguBW28Nvy1EANDVBXR2MnUhKTiJk1wcMam+
WAbkAE4C+H1jzIUALgfwuyJy/kQ/jFdyVMtSKT3w5TrvPJ4YKTrDw8C+fcCWLTwhJ0EqpRPIecwh
gCMmQYhlQG6MGTHGPJ65fwTA0wDmTvTzeCVHtezIkfHPdXQAt90WelOI3sYTMlFyccSk+pqibkAp
InI2gB4AD0/0M3jioFrW0ACcPu09FgEee4wHQYpOOq1Vf2bPBm6/nftiUrHySnLZEROqnlgH5CIy
FcDtAG7M9JS/7aabbnr7fl9fH/r6+gp+zuCgHji+/nUeMKj27NwJXHyx3hcBLrkEuOEGngApOkND
wI4den/DBp6Yk8qOPgN6juV+QPVi27Zt2LZtW6g/M7Z1yEWkGcAPAdxljPlyzmusQ06JkU4Du3cD
jz8OvPOdwKOP6vOdncCKFQzMKXyrVmkKYG8vh6yTjPsBJUViFwYSEQHwLQD7jTG/n+d1BuSUGH19
Xi/U7NnAyAgwdaqXW87VOilsY2M6UjN3LtDezovCpBob4+gzJUOSFwa6EsBvAniviDyWuX0g6kYR
RcGdA9HXp+XmJk3ynuO8CApbKgUsWKBpK5wsn1ysvEJUPbHMITfG3I/4XiwQhcqdA7FmDfDGG/r8
vHkcJqbocLI8EVH1MOglijm3F8oGQU1NmrLS38/a+hQNlj0jIqqeWOaQl8IcckqqsTHNIz9+3Htu
9WrgjjuiaxMREVE9S3IOORHl4faSWxLoIYJovHQamDMHmDEDWLmSozRJxVWwiaqHATlRzOWe9JYv
916bOhX48pcLfitRIDZv1mo/o6PAli2c1JlUXAWbqHoYkBPFnHvSu+QS4NgxzSEHNI98w4Zo20fJ
46ZMpVKc1JlUnNhLVD0MyIlizj3pzZ2rpeZOnfKe44mQwmZHaRobvVVkqb7lS0/hxF6i6uGkTqKY
cxffWLtWe8qXLQPOPhu49VaeCCl8Y2PAokXAvn36mItT1T93gTJub0qndfS2tTUZC4NxUicRYWAA
2LtXg/GvfU1PhkuXav7u2rWcTEXhS6WAFSv0PkdpkiFfegondSYX5w9UHwNyophzD3wbNmjP1PAw
D4YULaYrJEu+7c2gLLk4f6D6GJATxVy+Ax8PhhQ1d+SGvaP1z12gzOJxKLl4QV59zCEnijk3h9we
+PI9RxQm5hQTj0OUFGHkkDMgJ6pBSZtQQ/GzapWmKvT2speMiOobA/ICGJBTUtlAfPdundQJsHeS
osHeUSLyox46kBiQF8CAnJLEPZgdOqR1yK2lSzVtoBYPcEREVP/mzNGVfQFg9Wrgjjuibc9EhBGQ
NwX54URUOVvJAABmz85+be9eBuNERBRf7sq+EmhIW9tYZYUo5txKBg89lH1Au+SSaNpERERUqhZ9
Og3YhIalS3UxO8qvZgNyLkZASeGWl+ruBt7zHn2+tRU4cYL/AxQdLgxDlGzFatGn0zq/yR4bFi7k
iG4xNZtDDmi7OaGNkobLllNcsPQhUfLYeU179gBHjug5qacH2Lo1O+B2jw8tLbq6b3t7bU7sZA55
CVyMgOpR7oz0gYHxM9QnT9b3trcDt9wSbXspubgwTHLUQ6UMqg53XpO1YMH4fcIeHzo6gHe8wytI
YHvOKVvNpqxwhSiqV+4Q4KJFwO23jx8S7O7Wr4cOARs2RNdWSjau1pccxVITKFlsoN3erl87O3XE
Njd1zR4fnnsOmDFDn+PFe2E1G5DnLuFLVC/swW7qVD3I2Xrj7oHMHgh5cKMo5VtOneoTR0PIsoH2
7t36dfFi7f3OvVhzjw+8eC+tZnPIbbs5jEb1xi64MjoKbNkCLFsGnH22zk63+zcXZSGiMPGYQ4XM
nw+8/LJ2FO3eDdx8c/3FZVwYqAA3IHcnDbh+9CPg2mvDbRdRNRU7AfJClOKA+2EycDuTlW9fuOoq
Lz+8v1/Xx3DXznj66drfZ8IIyGs2ZcVyh9Fcq1aF3xaiahoY0APb2rXjS8oxn5PigPthMnA7k5Vv
X8hNobRxGaArdHKf8aemq6wAeoVmexE7Orznf/Sj6NpEVAnbA/Hgg1pnHACuvx7YtMl7D/M5KQ64
HyYDtzNZ+faFwUFdpG7SJO1Amj4daG4GTp7UcojcZ/yp+ZQV1113ac8401WoVtlyUAcPZj/f1aVB
OnPIKQ7sRWNzs04+duc3UP3h8YasQvuCmz5sq64AwOrVwB13hN7MqmMOeQGFAnKiWldoTgRQPwc2
qn25J98VK5hbTJRkq1Zpp2hvrx4HtmzR+/VSVYU55EQJ4y6kcOWV2a89+CCXJ6d4yC3NydxiomRz
yxpu3MgShxPBHnKiGHGHA2+8EfjudzUPz2IvOcVBbmnOeuoJI6L8Kq22U8vVepiyUgADckqCOXN0
hrpr1SrgzjujaQ9RLuYWEyWHm6rW36/zncL8/iiFEZDXfJUVVy1ffRHlOn58/HMtLfqV+zrFgV2J
j4jqX6XVdlitp7i6yiFnrVSqJ8uX69epU/VrT49WswCAzZu9fX3dukiaR0RECdLVpbdiHUDptPaE
r1o1fs6Tm2fOTqTx6qqH3O/VF3sXqRbMnasVLC68UCd5uqXl3N5zCXQQjYiICBgeBt54Q+eN2BK9
rtyyvbnv4YhacXXVQ+736os96VQLhoe1gsX27Vrv2d2nbe+522tOREQUlFKdnkNDXjDe0cG0lHIl
clLn/PnAyy/ralK7dgHd3VVsHFGV2P20vR3YvTt7P+VkOiIiClOp846tRd7RATz2WH3FVqxDHhC7
kxw8CGzYEG1biHItWaIHu9de08eHDo3fT+3QH4NxIiIKWjoNrFkDHDlS+D02S+G55+orGA9LInvI
3RWlOLmA4iaV8ob9gPwjOZwHQXHA/ZC4DyRDLZcsrAb2kJeh2MzeXJzpS3HW3Jz9OHckx06U4TwI
ihrn4xD3gWRgycLg1U1AXs5BgcP9FFfpdP6qKXv3eheanDhDccGTNHEfSAZ2ZAavLlJW0mngW98C
TpwApk0DnniCw/tUW5Ys0VU5jx4FTp3K/x47TGhTrlpatMrKjBncrykanFxM3AcoCZiy4tPQkAbj
AHD4MHD55dlpKxxSo7gbGdFe70LB+LRpwC236P2uLq1Pbgzw8MNcHIiiMzCgozdr15ZOFaT6xBFn
ouqoi4DcDplZIyPZgbc7pDZliv9cc6Kw2LzxhgL/kYcPA7/zO3rf1ic/edJ73b1PFBZ2dhBRucqZ
85ckdRGQDw4Cq1cDs2bp46YmzXNauVI3ts19uuAC4Ac/4AmE4ueaazQFZdq0wu95/HH9ai8w3eC9
pSW4thEVwvxhovpXzQCaRQkKq4sccmtsDFi0SHsPrYULgQUL9MRx6BCwY4c+39GhtTI5zEZx4JaU
yqehQRdaWLrUy9ncu1e/p6cH2LqV+zKFx87L+fnPgePHdR/cuJH7IFE9qmbJQ/ezaikOYw55mVIp
YMUK7/G0adprbq/E/vM/9fmmJmDbttrYCSgZbE/jsmX5q6ycOQN87nN63+Zs3nGHHhwZjFPYbKrK
q68C+/cDW7awp4uoXlVzJMx+ll3Nk+cuT10F5ICmp8ycqfcPH9Z8W0B3pKVL9f6pU8AXvhBN+4jy
6eryJmvOmJH/PTZlxeKEOoqKPam2t+tXpqwQ1a9qljzkap6F1WxAXiifKZUCLr1U7zc06HDqqlW6
I9lAhycPipvhYeCNN7Sncf/+8a83NOgoj4sT6igq9uKxp0eX02Zt4vrGSXjJVs1KOqzKU1jNBuQ2
EFm8ePwBYnBQ01LOnAFGRzU9Zc0arUTBkwfFUW6lIGvKFP165sz4UR1OqKOo2Eo/27drhSAeT+sb
L/6JglezAbm1d69O5Jw/H7jqKr2CB4DGRv3a0KBBzfbt2vv42GMalPNKn+Kkq2t87vjcucCVV+r9
fEE3V06jqPBiMFm4vZMrqNERjrqMV7NVVgBtd0OD9h66Ojt1A9tFVpqbvTrNM2d6KQGVzhYmqpY5
c7R+viWiqVcvvcQqFhQ/XJ0xWbi9k6uaFVbC+NyghFFlpSnIDw/SjBnAgQNeMN7ermUNm5qyyx4C
wPTp+lxbm/ccr/QpTo4fz35sV+G0bBUL96BlS8+1tmpvOU+UFBabB0r1jccYCmp0hKMu49Vsyort
2L/oIi8Fpatr/Pt6eoCdO7XX/OhR7R2fN4/D/BQvy5cXf72jY/xBi3mdRBQkHmMoqNRI93MHBpi+
AtRwQD46ql/nzwc2bQJee02rVNg0FREN0Ddt0tI6tj55by/wxBMMxileNm4cXwJq0iT9WqheK3sY
iCgo6TSwe7fe7+nhMSaJ0mnt8DxypPqf7VZb4YWfqtmA3Hr4YQ3KH3gg+3ljNEC/8UZ9zAlwFGep
FHD22d7jpibgkUd0pdkLLgBuuGF8z0FXlwbtzz6r+3aSexYoPJyMlQxDQ17H109/Chw8GG17KHxB
B8r2WPLkk/o46Z1LNR2Qt7VpCsrLL3uTNnPZyhVcRIXiyB6Q5s8H7rvPe94uXrVgAbBjR/4D4vCw
5p6PjXGlRAoPe7OSwS3FevKkVjGjZAl6FNYeS/btYyoxENOAXEQ+ICI/E5Gfi8gf5ntPfz/wrneV
/qzRUQ1Y3JPIJZewh4fiwe6XL7+cXS2ouVkPgMUOiO4Jk0PKFJY9e/Tr9OnALbdE2xYKzuAg0NKi
91tbgfvvj7Y9FL6gMwvsOWzqVGDJkup/fq0pWvZQROYD+AiAdwOYC+AYgJ8C+CGAu4wxZwp+80Qb
JNII4BkA1wB4BcBPAHzUGPO08x5jjMHYGHD++Voubvp0rdn87/8OnD6d/Zn9/ZoDddddGthMmqS9
jvY1VgugqKxapfulrRJkXXkl8MMf6v1C5cbGxoB163QU6NZbk92zQOG56ioeP5NieFi39/33F17m
nJVYaKLGxnQdGVsZL87Hk0jLHorIrQDmAdgM4IsA3gAwGcA7AFwL4I9F5A+NMT+ucpsuBfCsMeaF
TDv+GcBqAE+7b+rr0wPAQw8BGzbo4j/Dw1qX3A3IRYDvf18XCuro0IPFU0/pa+zhoajZJcgvvFB7
o7Zt0+HhHTv0QLViReGTXCoF3HFH6E2mhGtv169Jz/esZ+k0sHmzpsQtX67nykLsKJ/9vrgGVBQ/
qZSe42xnadKPJwV7yEXkImPMEwW/UWQSgPnGmGer2iCRXwPwfmPM+szj3wRwmTHm95z3vL0w0OWX
Aw8+OH5hlWJsDXMg3ldkVP/cxRGamzXY2b9fh/DszHbuoxQnXCSm/rnHJUArbWzalP+9dpSvt5c5
wFS+WjmeRL0w0OsicqEx5smcRl0IYK8x5g0AVQ3GM3wuHXoTAO0hnzatD2+91efru3p7daNv2cIr
Mope7sSp/fuB2bOBd76T+yjFExcFqn92noBVbEHvwcHaCKgonuJ6PNm2bRu2bdsW6s8s1kP+LwC+
aozZnvP8ewD8tjFmbSANErkcwE3GmA9kHn8OwBljzJec95hCcbvbszhtGnD4sPdaQ4MGPAAPIBQP
7jwIa9Ik4JlnNBWL+ygRhc2dJzB9OvDCCzwOUbKF0UNerMrKebnBOABkcsYvDq5J2AlgkYicLSIt
AH4DwL/6/eb3vEdzcoHsYFzEW1zFLUhPFKWBAeDcc7OfO35c6+dzHyWiKNh5Ah0dwK5dXEkxqbjm
QLiK9ZAPGWPeUe5rVWmUyLUAvgygEcD/Nsb8r5zX8/aQt7frymJXXaVl5BoavFJyZ50FnHeepgh0
dekEUM4Kp6gVmvvQ3a0LBRXbR1ndgIiqLZ3Wwgd79mhK6M03a+eAXRiIc1qSw51LkPTtHnUO+bMi
8kFjzJ05jVoFYE+B76kKY8xdAO4q9h432LYOHdJh/hMn9LF9vadHg5bt4/r7geuvLzxZhShox497
97u6dHXZ3P21UOUCVjcgomobGvLSVTZs0AX1bDDe0cE5LUkS9MJAlK1Yysp/B/D/ichtIvJ7IvIp
EfkWgK9kXosde7DIXbVzwQJvCC6XDd6JorB8uX5dtgz4yU+0F2LrVn+l5XiwpDjgsHZ9SKezOwKW
LtXjip3XOXP0AAAgAElEQVTg2dSkZVk5EpccQS8MRNkKBuTGmCEASwH8GMDZALoBbAdwkTHmmVBa
V0Ru73hLC/COdwAXXZR9UrjwQp2UcuiQ5pETxcnGjXrAu/deTVOxeeN+DoQ8WFIcuKsgp9NRt4Ym
amgIOHbMe7xvnx5X7IJAp04BX/hCNG2jaHC+XbiKLQwkxpi3AHyzyHsaglitsxwdHdqbODoKPPzw
+Nf37wfuvrtwjfLm5mDbR1TMwIAOCa9dqwH2wID/vPC4louiZOFITX1wS7C2tgIPPKD3/YzWcT4L
UeWKTercBuD/APiBMeZF5/kWAO8G8AkA9xpjbg2hnbltK1j2sKlJr+Stjg6ttmKfa2z0VvJsagKe
fbbwksBEQcudNLN3LyfRUG2plYU9qLixMeBjHwMef1yDcXte9LN9Ofmv/vAiK1sYkzqLBeRTAHwS
wFoA5wAYAzAZWvnkbgB/Z4x5LMjGFVIsIL/4YuDJJ7ODcqutDTh6NPs5HjwobO6B7uRJXQCoqUkv
FO2/49KleoIrVl1lzx49aba384BJRJWbaBDG1TrrDy+yskUakOc0pAVAJ4BjxpjRIBvkh4iYmTPN
24v8lNLUBFx3HfDII8Crr3rP8+BBUXAPdKtXa0WDffuy3zN3LvDKK6W/3+IBk4gqNdEgjKMk9YcX
WdmiXhjobcaYE8aYV+MQjFuPPqpBy1lneZM1Gxvzv/e979WScnv3es/NncudjKLh5tzedhuwYkX2
6w0NeiAs9f1+cjuJiPyyx5apU3Velt+qOZz8V1/SaS2EMXs2cPvt3K5h8RWQx9HNNwOLFgFvvukN
858+Pb6SytKleqDYvDk7jeXSS7mTUTTc6igDA3rga3KmV585A7z//YVPhvb7d+8GFi4EJk3SSaEs
OUdElRgc1OPJkSOaSrduXdQtoijYWvQjI1qLnsJRswG5LbU16vTZT5sGXHGF3r/oImDNGi8P112A
RUTrqa5cySCGwuf2JtkDX+6ch5GRwiXk7PfffDNw4IB+P0vOEVGlUqnsaissFZxMrJwUjZIBuYh8
yc9zYdu9e/xzhw8DP/+5BuI//rGuwGl7wadM8d5njAbi7AGgqNkDX1sb0NmpqVWAvwPh0BBX0COi
yqXTwJw5wIwZ3nM9PcCtoddQozjgGhfR8NND/kt5nltV7YaUa7RANvvevVpbPHcnsqUOc7EHgKJg
VzfctUvTVY4e1Ymdra0amPs5CNpgvrFRU7OIiCZiaEhH5UZH9TZ3rq4YzGAsmTgnIBoFA3IRuUFE
ngCwWESecG4vAMjTPx2+pjzLGrW16QHlE5/QgGf+fA1cXn99/HvZA0BRsSlXr77qpat0dADz5mlg
vmVL6RSUri6vXOL27UxZoWjYi8tVq5gCWKvcNBWAc6yIolCsDvl0AB0AvgjgDwHYvuTDxhifBQeD
ISKmv9/gxRfzr84JaC/5yZP5X2ts1GDmoYe4KBCFL53Wmeujo95CVk1NWjnos5/1X2qqtdVb6nr6
dOCFF3gSpfCxXnHtGxsDFi/WEeaeHvaOJxkXBMov0rKHxpiDxpgXjDEfAfAygBMAzgBoE5EFQTbK
j717dWGUQgoF44D2KHL2MEVlaMhLuWrI/AeeOqVB+Be/6D9378QJ7/6UKTxwUjhye8Q5Aaz2pVLA
M8/osYfBeLLZ0VsWCghfnqSPbCLyewA+D2AvADcT+6KgGuWH7ZER8coeumbM0AoUhbh1VnnwoTC5
AcyuXd7zJ09qucPXXvP3OakUsH+/ft5DD1W/nUT52BM2oCfswUEuClPr3F5RSjZeYEen5EqdIrIH
wKVRp6m4RMQABg0NWrM5/3vyB+qtrdqzaPN2OcRKYXNXtTv7bK9SCgDMmpV/vkM+w8PAVVcB99/P
1CsKD1fwqz9MOyKLq67mF0bKSskecgAvAjgUZCMmwubeFlLoOuPNN737PT28AqTw2Rns+YYDe3v9
f053N/DSS9VrF5Ef7BGvP+wVJcuenyh8fnrIvwngHQDuhOaRA4AxxvxVwG0r1ibT2Wmwb599XDgA
L2bWLM2b40mFouD2SgHAO98J3Hcf90ciChd7RYmKi3RSp+NFAFsAtACYmrlNC7JRfhw/roF4W1vx
YLy5ufBre/dy0gJFx/ZKzZgBzJypcx6uu47l44goXKw7TRS9kj3kb79RpM0YczTg9vhic8hL6e3V
gN3thXQ1N2tQzoMQhclOoGpu1snFb7wB7NiR/R6/eZwsUUVERBSsWPSQi8gVIvIUgJ9lHl8sIl8N
slHlEgFWrtQUFABYtgxYswa44AKvxnM+fX0MYCh8tkrFli0alLe36/P2azl5nCxRRUREVPv8TOr8
MoAPAPgBABhjdonI1YG2qkxdXcDdd4/Pg5szR+uN57NkCScuUDRsqkpTky4QJAK0tAB33gn89V+X
l8fJyVjJxhESIqL64CeHHMaYF3OeKlLfJHzGaDA+MKApKGvX6uPjxwt/z+LFPHlRNAYHgc5OHb0x
Rkt3njgBfPSj5edxDg76X0iI6g9HSIiI6oOvsociciUAiEgLgE8BeDrQVvnQ2KgrbgKagzt/PnDk
iPf69dcDy5drWkBuvfLGRuDoUS4KRNFIpYAVKzSIcp17bvn7JEtUJY/bK24nrXOEhIiotvnpIb8B
wO8COAvAKwB6Mo8jddpZM3TqVODYsezXjQE2bgQmTRofjJ8+rYE6e5QobKmUpqr827/pvujavl0v
JImKcXvF29rCHyFJp3X+DasBERFVT8kecmPMGwDWhtCWCXN7xgHgwguB227TE1Rrq5e6Mns2cOiQ
Lg7U1AT88R+H3lRKsHQ6e1VOe1HZ3AycPKn3J1JPn5LFzhvo7AT27fMmA4fFXhAAuk9zhKa2VWMe
AucyEFXOT5WVW0SkXUSaReQ/RGSfiPxWGI0rV0MD0NGhkzmt5cv1a08P8PTTXsWVU6eAD34w/DZS
cg0NjX9u6lS9AVod6LbbQm0S1aCuLr2dOqXlMu+6Czj//PB6qzmRuL5s3uyNuEx0hI5zGeoHR8Ci
4ydl5ZeMMYcAXAfgBQDnAtgQZKP86O/PLmfY3g68613A6KiXjpJOayrL7NnApk161d7Sou9vbQXu
vz+atlMy2UAG0FU5m5t1dGd0FJg3D7j3XvYsUWnDwzpvxj1ZjoyEFwhxInF9cYsfTHSEjhdp9YMX
V9HxE5DbsPc6ALcbYw7Cz6o8Adu7V8vFAZqLe9994+s4Dw1pD9LICLAhcwmxc6cGP089BXR3R9N2
SiYbyFx5JfDTn3ppKo2NWvKQwQ35YYOftjbvuaYm4JZbwvn5XNWxvthR5EpG6HiRVj94cRUdPwH5
ZhH5GYDlAP5DRGYBeCvYZpW2fbsX0Jw+DXzhC95QbioF3HgjsHu3vt7T4+1Y3d3ASy8xGKfw2UAm
N+f39Gng2mujaRPVHhv8vOtd3nOnTnmdDkHicHb9mTtXz5udnRP/DF6k1Tb3//prX+PFVVTE+Bij
EpEZAA4aY06LSBuAacaYAkvuBE9EjNtJ39urO8+aNd5kI3ei3KxZwDPPcOeiePjEJ4Bvfzv7uVWr
tJe8XJxMlVxjYxpMHTumF3m7dwff0dDX5x1j+/s5obMecJsS94HSRATGGAnyZ/iZ1NkGLXP495mn
5gLoDbJRfr3znRqE2ys5N0fXBuOAprcwF4ri4u67sx+3tQFf/erEPov5fsmVSgGXXKL3Dx0Kp4d8
zx792tCgx1X2ktc+pigkWzqdP5uAwucnZeVWACcAXJF5/CqAmwNrkU/9/Zo3vmmTrtDZ16dB+KxZ
+vqyZcDkyXq/vT28/EqiUg4cyH589OjEgymeTJPtscf0a2NjOGVcbQ/8mTN6IciLwNrH/O9kGxrS
wgIAsGAB94Eo+QnIzzXGfAkalMMYczTYJvmzdy9w1lnA9OnArbfqyWHLFs2r7O/XihV2skpu7xHz
IClK7kgOUFmvBE+mybNkiW7ryZOBtzKzeU6fDqeMqzv/gb1p9YH538nmdupMn87YKEolFwYCcFxE
ptgHInIugONF3h8Km+/k6u31FgQCxlddsbiwBUUlnfZKi4noRCpbknMi7MmUkmNkJHuBKUB7yMMo
4zo4CKxbp/vurbcyiCOqdYODel6aMgX4wQ+8Ywtjo/D5CchvAvBvAOaJyCCAKwGsC7BNvjU2as/Q
lCnAe98LfOc72ScIt+qK5eZLtbXpUM3YGE8sFI6hIe+AZ4zWk778cl20ivsglZJOa4oToHncZ87o
BPadO8OpHJVKAXfcMb5NnFhMVJtsp05fn3du6ujg6FcUiqasiEgDgA4AHwZwPYBBAL3GmHtDaFtR
/f3A6tW60M+ll44PxgFvAQ27UBCQnS919Gj2a0RBs5PiXGEu6kK1bWhISxwCwPvep8fBvXuBpUuj
bRMnFtcmpm+SZVNXOjp0bgovrMNXNCA3xpwBMGCM2WeM+WHm9kZIbSvqe98D9u8HTpzQk8GsWcDK
ldkHlXwT3uxzhdJZiIKSTut8hlzNzdwHqbR0GnjwQb0/bRrwjW/EI/eXE4trUzqtKZ72Yur666Nu
EUXJzkd67jmu0xIVP5M67xGRz4jIfBGZYW+Bt6yEvj7gySe9xydPju/tzjfhzT63ezcnw1G4hobG
B+SNjZpuwH2QShka0g4IADh8GLj66nj0bnJicW0aGsouD2z3LUomTu6NXsmFgUTkBbir8ChjjDkn
qEaV4i4MNGkScDwzxXTaNOCJJ3h1R/G0apX2RHV0AFOn6oqxqRTw+OPcZ6m0tjbgzTe9x01NXvpK
WIt5MF+8ftjjkbV69fj5AUSkwlgYyNdKnXFjA/LeXuC884Dbbw//xERUrkWLgBde0Il4Z854z8+b
p8H5RDFISobmZu845+rpAbZuDWe7z5mjcx4AXZRt06bgfyYFY2wMWLxY5yAsW6algnnsIMovLit1
ThGRT4vIJhH5voj8vohMDrJRfixcqL3j//7v3kmKM4Mpzt54Q/dVNxgHdHLx8PDEPtOWpuKkungK
Y9JcmIt5HHcK3tZgXw45UingmWe8dTsYjBNFy0/KykYAhwD8EwABsBbAdGNMf/DNK9gmc/XVJqsW
OYf+Ke4mT84OaFwT7SV3eyxTKeD553lijZO+Pm/Ng0pG79Jprft96pSOhLS16QVeb2+4udsrV+pc
HfaoElGShNFD7qcO+YXGmAucx1tF5KmgGuRXbvm4q69mME7xtmwZ8PDD3mNbR7q1deKLuhw44N1f
sYIBUtzYCiRTp1a25oFb7vDNNzUwbmnREcEwt/nGjXpxEPbPJSKqd36qrPyniLzLPhCRywE8GlyT
/HGD744OLd9UDtZfpbDNyKlN9L73ac/4U09N/GJyyhTvvg3+KD4GB3U11iNHKlvzwN22DQ16zIoi
KGYlBqL6wTgoXvykrPwMwDsAvAQtbbIAwDMATkGrrYS+JIWImI4Og9HRwqkqpSa6tbYCx47p/VWr
gDvvDKftlFyf+ATw3e9qqbFqTcRjCkH82WoWlaSXjI0B556bPSLCSZVUCU4Gp2ql1CVBXFJWPhBk
AybKrrbZ0gJMnz7+dbt6HOBNfHO5NVcffzyYNlL11PrJI532gnFAc7+r8TswhSD+Bgcr20Z232/I
Gc/kpEqqRKlzJNU/m/o7fTpwyy3RtoVqvOyhle/KrlSvVGenrvTZ2lpZygCFo9av5N32A1rC7uc/
535HpbmjeRbXXKBKVWPkhmpXOg38y794i9XV4nk1TLEoexhXs2fr10LLNZdaPe7RRyvP36Xw1Pry
3Ln53SdPAlddFU1bqLbkW0Hx8GFgw4bw20L1gyusJpcdEbHBOEtGx0PN9pCPjhoO1SfI2Fhtp2a4
i3AA1RuZqfVUHirNjuYBWq3lyBH9evnlmrLEbZ5ccfr/j1NbqDh3xJajtf7EqodcRNpFZIa9Bdko
PzjbP1lqfXvbRThWrdIT1kUXATfcUPnMdpsHykWB6tejj2o1nRkzgOXLgZkzK6/aUk2s1BCdOP3/
x6ktVJwdse3oYDAeJ35W6vxvIjIC4AloucNHAewMumFE9SaVAs46S3skHn64OieuWk/lodK6u4FL
L9UKK9u36/4DZNc2jxIDsehM9P8/iIsoHotqh01Xeu45BuNx4qfs4bMALjfG7AunSaWJiKk01YbD
axSmdBrYvFlXVzx9Wp/r6NADYiX7Xq2n8lBx9jj10EO6ymt7O3DffVrDfl/miBz1ZCxODozORP//
g5gkz2MR1bMwUlb8BOT/DuBXjTFHg2xIOUTEXH21qSiYrvWqHVRbcqusAMCuXcDS0Kv4Uy3Jt9/0
92vKig2CL7gAGB6OrnOBgVjt4UUUUXnikkP+WQAPiMjXReRvMre/DrJRflQ6RMrhNQpTvlU0/+RP
qvPZzOGtX3a/aW/Xr/Z45VbIGB4OL2Uk375W6/M7kogVVojix08P+U8A3AfNIT8DQKArdH4rkAaJ
3ALgOgAnAOwBcL0x5mDOewxgKl75jr06FJaxMWDdOl0R9tQpfa5aKy1ytCe+3NS4rq7ye7LtceqW
W7TMYb7jVVi9nUuWAM8+66VccV+rXUzZTC5u+4mJS8rKY8aYniAbkfPzVgL4D2PMGRH5IgAYYz6b
8x7T328YTFPNsUvd9/QAW7dWvv+m08Dtt+vkvmp9JlXPnDnAyIjenznTK19YbjBb7CQaVudCKgUc
zHSNNDdrCU/ua7WJF/HJxW0/MXFJWbkrU2llThhlD40x9xhjzmQePgxgXr73uUOkHLKnagl6X9q4
UQ+C1Qqch4Y0GAeABQsYIMXNgQPe/aOZWTgTWaa6WCWTgQENjteuDfb4Z6u7NDYCO3dyX6tlTNlM
Lm77+PITkK9FJo8c4Zc9/CSAH5V6E8tuUbUEuS+l05qmcuRI9T7TPbjedlv1Ppcql0576R2Ars4K
aC+z31U27QXik0/q43wn0bCOfzt36urGe/ZwMnKtYw55cnHbx1dTqTcYY86u9g8VkXsAzM7z0h8Z
YzZn3vM/AJwwxgzm+4ybbrrp7fvHjvUB6JvwFR9zqsgKsvfABk6At3RxpQYHORciroaGsgNye7+c
fWvzZi/lZdIkTU/K3c579ujXifS8l6O7G3jppeA+n8pTyXnLTsSl5OG292fbtm3Ytm1bqD/TTw55
C4AbALwHgAGwHcDfG2NOBtYokXUA1gN4nzHmrTyvZ9UhrzSH0s3zXL0auOOOibWbal+Q+bgsNZYs
dnuLAMZopZSrrgK+8x3/237GDC8lCdCJoUND2d8/ezbw+ut6n8ev5GAuMFF44pJD/jUAlwD4u8z9
5ZmvgRCRDwDYAGB1vmA8n0rLbh0/7v78iX0G1YeBAV145ZxzdAJmtXJy02ng0CENnvL1clL9GRwE
Fi7UFTUB3f5tbeVt++XLsx+/8YbuS+m0diTMmOFNFAWCPX5xrk68MBeYqL746SHfbYxZWuq5qjVI
5OcAWgDY6VAPGmN+J+c9Fa/U6ap25QuqXbkLsVSr54m9WcnkbvdyVma16QjNzfr9Nv986VJ9vGbN
+AWDgj5+uSOJuSU7mfYXPpbupXLx/3TiwughL5lDDuCUiJxnjHk206hzAZwKqkHGmEVBfXYhGzfy
wEbKXcCnp6d6PU/szUomu907OoDHHvN/fHHnG6RSwJtvAldf7Y0E5i401dKiZRWD5I4k5vaHBDE/
gopjLjCVi/+n8eYnZWUDgK0isl1EtgPYCuAzwTYreEuW6AGtqwu44YZwyoZR/A0Oah7umjXV7W3k
zPZkstv9ued0UqRfdqJmQ4Mek06c0P3G7juDg8CsWXq/qUlf37JFF58Kik2fWbZsfEUfXnASxV9Y
E8BpYor2kItII4CLAbwDwOLM08/4ze2Os5ERb5GL730POJOpfL5uHSdFJdnAgAZA+Za6r0SQvVkc
hownd7uUq7sbePll77iUG+imUsAzz+jPuOceryMhiBzyJUv0eHnsmOasd3Zmv875EbWDx4pks8cV
W3qVPeTxUrSH3BhzGsBHjTFvGWN2ZW41H4wD3iIXra3AtGne85zUmWybN3s1nRcvro0RE9bhjyd3
uyxaVN5kyPZ2/bpsmY7W5BtZsRd5vb36uKcHuPXW6rXfsp0XJ07oQkdbtmTvZ0NDwI4d+j6/9dUp
GjxWJJs9rnAkK578pKzcLyJ/KyLvFpFLRGS5iFwSeMsCZhe5eOopYMUKfS6oExrVDjdPdu/e2jhp
cRgynmzP+NSpwL59GgSdf76/oNxWaGlry94nLbfiyT/8Q3VXf81lOy+sjo7skznTVaIxkao3dlt1
dgKvvsqKOUnD1Ml48xOQ9wC4EMD/C+AvAfxF5mtNs4tcdHcDc+fqASroSVEUf26ZuWnTaiPAtbnJ
5awAScGzJ7/LL/eeGxnxd5E3MKC90Tt25O/NdHs67dBzUCfYa67xRg5TqfGTU3mSj8ZEeru7uvR2
6lThfYvqV6UloilYBQNyEbkxc/ePjTHvzb2F1L5QDA9rD1buUCzFT9C1kOfOBRob9f7hw7UR4HIY
Mp7syW/uXC+gbWjQkZdS++7QkDfHJbdHGgi3V/q117yqKldfPX5yKk/y0XBHYEZH/R0Ph4e1lr19
bzUrSRFRZYr1kH8y8/VvwmhI2NzAzg7JMqCJv6BzIO++21viPJWqjf2BPZTxdvfdXkB75ozuv9df
X/x7SpVL7OrSUb0wtrcb/OdWV6HoDA7qPnDkiP/OJJveZi1YUL19iAtHEVWmWED+VGaRnsUi8kTO
bXdYDQyKG9i1tTGgiavcg3zQPYMHDnj3bU95NQR5shoYYNnOOLLbfN++8a+dOFH8e0uVSwxzVI8X
fPGUSnnzn/weD919qaOjuhdY7oT4IMtvEtWrgmUPjTEfFZHZAO4G8CEAdVV/JLfXhyeaeMpdyGBw
MNhFnFpbvWBp//7qLZ4Q5IIMmzd7KyiybGd8uNs8V0tL8e8tVSYzzJQVW/98zRqWy4ubco+HNr2t
sVFXfa0md/Ixq5URla9U2cMRY8xSY8ywMeYF9xZS+wLDXp/a4AYeU6ZolYotW3TbBdEb7NaMnjq1
8kmdDQ16crKBWRA5m26vvl1inaJn0wOmTQPmz9cqOIAGQpVWcwr7+MVyefFUbv6+TXM5fVq3ZzW3
pZ0Qz2plRBPjp8pKXeJEpNrgBh7Dw9oTPDoa3FD9woXe/SNHKp/UmbvEeDVzNi33ImLnTqatxIVN
Dzh8WFOK7CTNefOK7wN+0pvCPn6xtGG8TDQFbiJpLn5t3Bhs+c2kYU5+8iQ2IOfOHn/ptA6THzkC
3HgjsNuZuRBUdQA7pBvEz5g8GTh6tPr7m10YBqid2ulJ4Fa/yb0wK6aSBYWCwhHFeJnIiIU95508
WXixqUq4qU1x2GdrXbVHpRjzxJ/vgFxEqryYeLTcnf2SS7ijxpG7jb77Xe0ZB7SMXBC9MHYJ8Fmz
dF+oxs/40Y/0a0MD8NZbwfTsb9yYnbP5qU9V9/NpYtwgdsoU7/mtW4Grrip8vLG90U1N3oJCpaqy
BI0jivEykRELezzdskUriwWxLZnaVD3VHpXitom/kgG5iFwhIk8BeCbzeJmIfDXwlgXM3dnnzuWO
GkduKobNje7tBZ58MriTyY4d2sv89NPV6em59lqt3XzmjD7OV1O6UgMD2T2wK1dW9/NpYtwew7fe
8p5/663ii7LYQH7qVO+5Bx4ovh8G1fvl93PZ+xauiYxYhJF2xNSm6qn2qBS3TQ0wxhS9AXgEwAIA
jznPPVnq+4K8abMrMzpqTH+/fr32WmMAY3p79THFw+ioMbNn67aZMcOYSZOMaW42JpUy5pprqr+t
7H7Q2WlMe7veB3Q/qcS8efo5TU3G7NpVnba6rr7aaysQzM+gicndNnY/KHa8Wb9ev6+lJfv7iu2H
7s+pdH8t9Lmdnfo/kq/NQf18qh73nBeUj39c95Mgjs9UmTC2fz3LxJ2Bxra+UlaMMS/mPHWqepcE
0XCHYJkfGU+plPZU9/drdZXjx7WnfGwsmNQPd1npQ4f0uWr0aNvJfadOAcuWZefCV4Pt+RAB7ruv
+uXMqHy2x/jJJ/WxzSfv6AAefbT48cYOLbu1ykstUhVU75f93IYGL30m3/8de9/iL4y0I656HV9M
O4s/PwH5iyJyJQCISIuIfAbA08E2K1zcUePLbht3siVQnZKEuXKXlXZXSaxkSN5tuzHAZZdVrckA
vAvKAwc0N5miZ4Pqffu0qsru3bqNPvQhzfE/cqTw97bmma1zxRXFj09BdSrYMnmlUq7YqUEAL8yI
KiGmxPR/EekC8BUA10AXB7obwKeMMfuDb17BNplS7ab6MjYGnHeeLtZj9fdXd4GdVau0B3DZMuDs
s7WWrg0u+vq8WuLl/tyxMQ1krJUrdTl1ql92X+rtzQ5S58zxFnFaswbYtGn8946N6YiQfd/Spbrv
RRXo2t/FXqDmWzmUCNB9N8iF25IkndYLey7GFQ8iAmNMoEtelewhN8a8YYxZa4yZZYzpMsZ8LMpg
vJo4Eal2pFLApZd6j4Moe2hTVjo7s4NxoLKen1RKK7cA2rP/jW9Up70u7svxUqjH2F3NsFCfgk3V
Wr1ag/Yog3FAf5eFC4ELLgBuuIH7VxzE9f+do83Vw6ooyeOnysq3RSTlPO4QkW8G26xwcIevLYOD
XpASRNlDm7KSL/+x0iH5RYv0azUWG8q1ZAnwzW9yX46Tyy/XUZDZs/W+DZzsaoZtbcVr0g8M6Gs7
dwLXXRdt4DUwoOlQxSrDULgqqUMetyCe8qtm+g+3fW3wk7LyuDFmWannwlSNlJV0Grj9dq1tPXOm
BjXt7RwaSjI7NN/UpD3Zvb1a47sa+8P8+cDLL+vy6bt2VXfYP5XyVoFsbtayjdyHo+VuE6u/X+uR
Dw7qBF/7XL70JzdFyv3+YqlSQQ1xu23p6ACee477V9QKpUQVU0naHYWvmuk/3PaVi0XKirZDZjgP
ZvwylncAACAASURBVABoDK5J4di82Vto5swZ9v6QN4Ht1CmvksvHPlb559oFhwAN0qrdQ97crF8b
G7VHlcFS9Ow2cR9//es6CmOD8WIVfGzvmLvaZ6lesiBG/NJprypQKuVNcqZoxbUOOVVPNdN/uO1r
g5+A/C8BPCgifyYiXwDwIIAq17cIn5vLaSsecGdNtlQKWLEi+7nHH6/8czdv9gLyUuXrJmLnTq3k
sWcPSx7Gxc6d3uqp7oWSPTG6FXxcucub2+ospQIvN3Cu5vyKoSGv4+Lqq5M3oTOuQ/1usOa3jayE
k1zc9rWhqdQbjDHfFpFHAfwiAAPgV4wxTwXesoAtX649oICe/FpauKPG3ZIlWnmiuVkDnCCCg8FB
nYB58qQGVIsW6Umukn3DvfgrVb5uIrq7gZdequ5nUmW6u4Hnn9cylPff7+2rduLwxRdr+lIu28sN
6GjNDTf4Sz9xA+cFC6q3j7k9a7fdVp3PrCXu9kin4zHUn5ua5LeNNoin+Kt2+hm3fW3wtTAQgJ8B
+D6AzQCOiMiC4JoUjo0bdcIVoPnCJ05wMYO4GxnRlI99+4Krtz0wAFxyiQbjxuiJrtJ9wk7k6+kB
vvOdyttI8ZZOa3nDnh69iHQDb3fi8Pnnj+/RtAHw1KnFF+LJtWePfp0+HfjKV6rzewDsWYvjUH9u
alIc20iVYcGJZPJTZeX3ALwO4B4APwRwZ+ZW09xVIC+/XJ/jAS1+3OHYpsx4Tmur9joG8bO+9z3g
4Ye9knTV2CfmztVe0ZkzK28jxd/QkF48jo6Ov8h3F/0ZGSlczafcY5LtgT94UL+3WukVSS9jF7cL
knypSXFrI5VWKs2IF1kJZYwpegOwB8DMUu8L86bNrp7RUWP6+/Urxcf69cZMn26MhsfGrFplTGur
MZddZsy111Z/e119tfezpk83Zs2a6vwM93P7+yv/PIq3a6/1tndPT/Y+NDpqzOzZ+lpvb+H9q9xj
kvszuZ9V1/r1+j8cxDGnXO6xZPXqaNtCE1fqnMCYJH4ycWegsW3JHHIALwI4FNwlQfSYXxVPQ0Ne
6biODs2pbW7WHmyg+jmduRPuqpWjzt6OZBkcBNat07Sn3AWmBgaAc8/V+7ffXrhHs9xj0uCgt7on
97PqilMeeb6c/rit6Bi39sRRqXMCY5Jk8pND/jyAe0XkcyLy6cztD4JuWNByh4ziOps+yXID5OHh
7AC92kGHHfr90Id02H/GDF3mvtL9wU7k44mp/qXTWh3l0Uc1V3zt2uz9Z2hIS6yOjOQvf2nzz8vd
99wUvChSF+r5+BmXC2pbPnX27OyLOT/5xmFuH+Y/l8Y0I8qrVBc6gJsyt8+7t6C77ku0qeLhh9wh
I6YVxM/oqDELFxpz5ZU6XDx3rm6fpiZjdu2q7s9avFjTVDo7NSWmmsP/NkUB0DQYql/ucSTf/jNv
nj7X3m7MCy+U/v5aORbV8/EzLukDhf7GNl2pWApUmNvHT3uIag3ikLJijLkJAESkzRhzNJCrggjk
9nqsXZv9mKKXSmkJNztcbCdFnjoFfOEL1R3SsxVcAODwYe/5atR0dssemsoWmKWYcxf0OXRo/PGk
u1tXbD10SHvIc/dhd9JnNeuJBy0uvchBiEv6gFuBZ3TUK8c6OFh6Rccwt4+f9hDReH6qrFwhIk9B
Sx9CRC4Wka8G3rKA2SGjgweBs8/WvORVqziEFDfuiaSnx7tf7ZOKu7Li5MmaLrBmDbB1a+X7gy17
uGxZcLWc6zlloJbY48qqVfnTlOzKmw0Num8ND2e/3tWl6SqzZgGbNpW370W5D3AIPniDg8CkSbqQ
3ZYtOk8B8FcJJ8ztk/TKPEQTJaZEl52IPALg1wD8wBjTk3nuSWPMhSG0r1CbTKl2+5VKeT2j8+Zx
gZW4GRvTuuBz5wJTpmjvUO5EuWoYHtYLM6u1VVfttBOTBgYmPlHJzlEIsseor88bSejvj0ePXhLZ
CW27d3sL9bjbY2xMg+5Tp/Rx7jFnotvRTja0xzLuA/UnnQa++U3g9Gl93N2txyxOniQKnojAGCNB
/gw/VVZgjHlRJKsdp4JpTvjeeku/NjQAd9Z8dfX6k0oBx47pRDhA01bWrq3+Cai7W6u47NunJ7iL
LsqurLB378QrLYQx5G1HEtye16Qtcx4HbkUOYPxoTiqlN7uf5dbTn2hqwebNXjCeStVf2gjpvmWD
8VRKL+biUv2FgsGKNcnip8rKiyJyJQCISIuIfAbA08E2KzzLlunXM2eA97+fw/1xdOCAd3///vJm
7y9Zogexrq7x6QG5du7Uk9xTT2naAOAFRnHPkR0c1IWTzpzRv1FQK5lScXY/WbZMU57ypQhccw3Q
0qIjMO4qnsDEUwvceQpXXFG9EzdToeLDrsba1KSBuE1/iusxiQrz+3/FijXJ4icg/20AvwvgLACv
AOjJPK4LNvAC8q+cR+HLPVhNmZL9+vTpwC23+PssO1lz377SQerNN2uN6BtuAL72tezAKO45srbn
FQhuJVMqratLR1o6OwunVr32GnDihJ5oc483E82/decpfOc7E2t7PgwI4sOOeNlJ7XE/JlFhfv+v
4t4RRNVVNCAXkSYAXzHGrDXGzDLGdBljPmaM2R9S+wI3OKh1XYHs2esUHfdgdf753iiGPTgdPJi/
hrPLBvVvvul9b6kg1f25vb06ecqqZKJSWL2Mbg8/01WiMTysF39bthQ+0QZxkt24UYOze++tbnDG
gCA+owS2R7yzE3j1VU3d8zsvJS6/Aym//1e86EqWogG5MeYUgG4RmRRSe0JnF9To7PRmr7MnKFpu
6beREd1G/f06FA/4Cw5scH3ypFZNyQ1S852g3LJi+/Zl915UckILo5cxnQY+8QnNfc9Ng6Dw5CtN
lyuIk6wdIVmzprpBV9IDApubHYdRArstFi/WOTXltIcjHfHi9/+KFWsSplShcgD/COAnAP4ngE9n
bn8QdIH0Em2aQFn3/Nav10UTOju5mEFcjI56i+m428MuFDRlijGNjcbMnJl/cRVjxi9OYbfztdfq
49yFMtav1wWIZs/2XnN/diULa4SxUEY9L8xSS0ZHjZk0ydsWq1eH97O5D1TX+vW6WJj9m3Z0xOPc
MJHjiV2Qavr0wsdMIioMISwM5CeHfA+AO6G96VMzt2nVvzSIhu052LdPh/uT2hMUJ4WWAR8Y0EVV
jh3TagPFJi/m9kDk9hDlDhm6S5o/8MD4mvQTHbovtNx1tTG1IB5SqewRHgm0SFY2O+mvvd3/HItq
qceUiKEhr3JNczPw2GPxODdMZNTCjg76SferVD3uC7WM26OG+I3cAbQFfXVQRlsqutJxlVrKmqLl
9mxfeaXXW2VvV19dvJdo8WLtFWpuzu5VcpfDXr9ee7/cz503L/tzJrp8tu3pB4xZs6bc396/uCzv
TcZcc41u756ecLeH+/9RjR7y3FGlYuqxd972RHd0BHdu8Ps3LvY+P58R5nL29bgv1DJuj+pACD3k
foLfKwA8BeClzOOLAXw16IaVaFPFf1yr2icxqg57knED5SlTxgfkpbabO+Q8eXL+k1FjY/bntbZW
7wTstj/M9AWKTqUXR+UEwq5qB13lnMjDDPjC8vGPayrjNddEn2pW7H1+PiPMC/Z63BdqGbdHdcQl
IH8EwAIAjznPPRl0w0q0qdK/7duYWxdP7knGHkwuu2x8MJ7vIOMGNDNn6vtE9LlFi3Rbd3YaM23a
+GAc0Iu0ah24bG/psmU8GJI/E+3RqnbQVc6JvB5HaMIY3fJ7/im2LeIWcNXjvlDLuD2qI4yA3E8O
OYwxL+Y8VTcrdYaZW0f+2TzctjatktLY6OXIWg0N+fMo3Xzxyy7TRViM0eeef96rS374sLfynWvH
DmD+fP8LChUTVDm6fJgrWDvybat0Gpgzx1uVtqenvPkA1a7IUE6uclBVXqLkLrak/UDV5/f8U2xb
xK0SDiuDxAu3R+1I9Eqd6bSWwwM08GMN8vgYHNRSlEePAm+9BTz8sAbRlkjhSVbuBMfvfAd43/u8
x7YkYGurrniXz9KlGuz7XVComDADlc2bvQuRdeuC+zlUuXxl6DZv1knFpzLdHa+8El37gPJP5PVW
Ws9dbOm224L5GX5X2yy2LRhwEdUHPwH5DajTlTo3b9YgHNDAb8sWXYiGQXn0UildWhzQCgeABtM/
+pH2mD/+uAbO+djVEu0Jyu1BevRRb/GcRx/Vz9q1C5g1y/v+efO0Vx2ozqqXYdUhf+MN73GY1T3q
XbkjD37en68qzoED2e/Zu7e2Att6q/SzcSOwcKGurHrOOcDKldU/N8Std5uIolMwIBeRL2XuvtfU
6Uqd7pCkNTLC3sW4sIH1lCn6+OBBXY68uxt4z3sKp5Pkrpbo9lLfcAPwxBP6GUuXagnFv/1bLaFo
7dwJ/Md/VG/VyzAClaEhL/0mldK/E1VHuRdUfkYqci8aAW8/t2otsK234DKVAhYsAF5/XTtuglg0
bqK920xPI6o/xXrIPygiAuBzYTUmbHZIMrc3MWm9i3E6uLtt2bNHA+tDh/Q1G6CMjBRPJ8kNgEut
tucGs4D2TK5ZA5x7rgbwlf5NwghU7O/c0aGjB/UQEMVFOfW9/Y5U3H23d9F4/fX6XFubfp06dXwd
/KiUc2yox9QJt6Z8uTn9fkz02Bv39KA4nVOIakah2Z4AbgEwBp3AeTjndijo2abFbqhSlZXRUWOa
mrIrbIRdOzgOwqqV7YdbYcK2q6VFt5NdmdOuqlqoPGHurPLcii3Nzcbs2uW931YpcF/PLYc50VJ0
YbGrmF55ZXzbWKvKKY3q7mupVOHt0NLivW/VKt2/2tuz9/04bEP32JCksp32//2aa3T7rFkTzPbw
W1En9/hTTmWVKI5drH1N9QYRV1n5n8aYFIA7jTHTcm7tQV4khCWV0uodgPZkrVwJbN1aXz08foRR
TcAv2yM1aZLm9be06O3UKW9lzp07i6eT5PbUub1cAHDypFZfsQYHvZzxxkb9/NzJVnHvkUqlNP1m
xw5O6qw2vxPvAP8jFW56SnOz7l92JAiIT+qce2xI0sihTTvaskWPDZs2BXNe8JvOlnv8KWfULYpj
V73NJwhCoVEEji4kV7GA/IHM18NhNCQK6bSXqmCMDhnXYzBe6h88jGoCftkTzaRJWpbwxAngyBF9
TUTTSFau1Nd6e/2VJLSfaSeHimjVFiuV0pPWvHmanrB0qeb4dnWND+rLOcGEfWBNavAUtHKCH/ve
554rPvfATli2/3O5F41APLahPTb09CRrXkJYnRR+963c40856UFRBMf1Np8gCIUulOLe+UMBKtR1
DuBJAB8D8ByAXwXwYef2q0F33Re7oUopK7mpDPU6JFtq+DCOCwfkW5HT3tw0o5YWf0Ox69cbs3y5
eXuRHvs9hYZzc/9mE/kbhT1sO3eu/qxp07jIVVQWL/YWniq2DXL3J5tyZFeWXbo0+v/H9es1XWf2
7GTtT+vXe9vhootqfzvE8fhOhdOO4rbQEylEnLLy2wDeDWA6gA8BuM65fSiYy4Nwub1SHR06yaoe
h4lK9ZBEPRnLT0+ymzZga4mLaA+6n56EoSEtcwhoKoH9Hrc3YtEirw25f7OBAZ3suXat//0jzJ6p
dNobSTh8mItcRcWdcLx4ceF9Jfd/zlb0OHhQHy9cGH3P4tCQpkCNjCRrf9q82dsOdoGwKFW6HSZy
7KLgFRpF4OhCgpWK2AH8l6CvCsq9oYqTOhcs0MmCzc1eb2bUExurLe49JLk9yevXZ/eIz5qlPUP2
d3jhBZ3QaXuxcifi5uv1tktU25vtRba9EVOnFu8Rn0hvd5h/d7d9HR3x3db1bP368ZPEyxkZiVvP
WLntifvEZ786OuI1alrJfuH29nOCJdHEIYQe8mJB7/syXz8MTVnJugXaKODTAM4AmFHg9ar8gXMP
VnE6CCdJ7gnHDS4bG/MP07rvyd1e7msLF+pj94LL/T6bKpBK5Q/uC7XRr7CCFNu+jo5kpRfESW4K
XLn7StwunMttT71U1rjmGvN2alsctoWf7eAn9Y4X6kQTF0ZAXixl5T2Zrx8qcAuEiMwHsBKAj+l6
lXGHJu0EqmnTgK98JeifTK7cITo3lej0aU35aGrSCigtLcCHPwzs3q2v9/SMn4jqporMnaspKSdP
jv+5jz+u9cZfecUbyp0zJ/8w4Y4d3ve8+KL/3y2sCTqDg5rmcMEF1amdTuWz+92yZbpflTvkHHXq
WK5yUx3qpbLGxo16PLr33nhsCz/7RaHjjFv157HH4vH7EFEBQUf85d4AbASwFMDzCLiH3K0FzGG9
+Bgd9eofi4zv2Xafyzea4fYo2Z7j3B7ypUuz60u7NaHzaWz03jN5sv/fJcw0hHrpoaxV5fQo10J6
R7n7U9x6+Cdq/Xo9/nR0aG95scnfcVHoOPPxjxvT1eX9HkQ0MQihh7ypUKAuIp+2MXuBQP6vqnpl
oD9zNYCXjTG7JYSaX62tOikQ8MpcTZ9eejU+ClYqBTz9tPb0fP/72atoigCzZuly1u3t+UczUim9
rVmjpQ7XrAFeey271GF7u46G5LKlEXM1NGg7cksmljI4qL+HLVUWpHrpoaxVtifTD9ujCXgrycZN
uftTOb9/nA0N6QRKQOuQp9PAffd5z61bB9xxR2TNy6vQcWZ4WFeOtb9HPWwfonpVMCAHMA0ajC8G
sALAvwIQaJWVRyb6A0XkHgCz87z0PwB8DsAvuW8v9Dk33XTT2/f7+vrQ19dXdlt6e/VANWOGpjS8
9ZamsGzYkLwDl6040tqqB/eohzbtyb2zUxcEamjQvrorrtBFgl5/XRdSKbSt3ICnv1+3sWvHDuDA
AWDmTODMGX2uvb1wHfadOzU9pqcH+Oxn/f+NwgxSwgz+qTK5wW7c/v+A5O5PbspcT4/+/uec4z0X
h/rwuQodZ3iRHrw4/u9S5bZt24Zt27aF+0NLdaEDuA/ANOfxNAD3VburHsA7AbwOTVV5HsBJAC8A
mJXnvVUZgrBDrG7qQlInvoS9RHaxIWD3tV27tELKZZd57bNtLZQGsn69VymhrU2Haz/ykezUlPvu
0/e6qSizZ49vw7x53nL0v/AL5f2N4j7MTdVT7rauRhUfCsboqP5/r1njbR870bPQpO8gVXIcqZc0
ojir5v8uzxnxhSirrLz9BuAZAJOdx5MBPBN4w0LIIbdYoSK71FcYZR+LHcTyvebmSLolEI0ZfxDL
rXYB6EIt9n5fn/ezJk3ynm9v93It831GuaUxGWQlh7utZ88u/2Qat5KHlC3KwLaS4wgDvOBVszwo
zxnxFUZAXqzKivVtAI+IyE0i8qcAHgbwrUp75n3Im7seBFaoCH+J7GJDqflecyuxdHd7OeKrVgH/
9E9ehYGPfQzYsyf782bO1DQXQH+/TZuAJUu0You7RPahQ16upW1DY6N+bWsDpk71PsPP34jDxcnh
pjmMjJRfUaerS28c7o5WoUXKoqyAU8lxhMuwB6/chXyKbZN829rPwnlUJ/xE7QCWA/jvAG4E0BP0
VYKP9lR6sTNO2CkbcRN2D1Cxn+enLe72cm9z546vnuJWZbFVVPLVn3eHpEdHs3vV7W3ePP9/Iw4X
J4dbGWgivdzsGYsHdzt0dgbbs+y397qSOuQceYmfYtsk37bmsSEeEGWVlZyg/VHg/7b37lF2Vfed
53fXU1Wqp1QSRbmgkLEsRSC5ChWIBByELSVx+VGKE01YzEzhTKZqVtKr22l7INOd9LJntXuSjicd
pycTr6btQJK20i0Y2zFxyBgNQubtgNHDgCkbXDIYZAG+Eg+DELDnj9/9+ey77z6ve8/z3t9nrbvu
+5x99tmP3/7t3wMPp7QmyA3TGeP1173Pi+i0kyZmPWRFkLNjFEfIn/yk/rPOTkp1/cQTtZ9rY6+l
p4ee7WgqHR3A+99fqwVbtar2N9u2kWYjqpasVaJOCOGYkYEacYIs4m5KXGe1VnBu4/swMAC88IKn
xUyjH0eNtBNlHPE7Vrs65haZoHviutdFHBuElEhb4k/jgYQ05ObKc/36Wg1pO1HGFThn1jTvn+n4
OTHh3dPBQe/eLizQ9V51FWk0g+LP25r23t72axtCNhRtN6WRlOtlHEds+D6wE2eamuWo2usomvSi
acLFdj05ijY2tCsoglNnER9JCeT9/VQDnZ0UdaNdGz0P5mNjXkSRvOoh6kDOE6YpANiTEg9kphOo
aeqydq1nluKayCYna88RdxtbJqXWJYl7m0b7SOqYjaRcL5pQ2AxZCEFRzxFloVM0oa0VFmetgMxB
yVEYgRzABQB2VV/3AxhKu2Ah5Wm2brXWFFWDB42envZttDyYs0Y5q0grLuyB3BV+kIXtvj763fAw
Cd32pOTKuGdmZw2zC3dl8ozjZyCTUuuSxL1tNjJLWuXSurHIU0UTCluFMi50yljmVkTmoOTIQiAP
jbKilFoCpbP/T9WPJgF8JUmzmbxge2KlKGNnu3qis93a2bPeZzqzGDe1mPZyfX1UrkOHgGeeoWQ+
fI9GRoBLLqHfcjInOxICZ9yrVCh6yiWXeNFWmNlZ4Ngxt33l8eP+5YziZ8DRXiT7a+uRRDQEOzLL
OecEt7koJNXm1q2jpFzbt9OxopBnJJJWJm4UjyJQxjLnQdoRVMT+vFxECXv4zwBcCeAlANBaLwNY
n2ahsuKhh4DJSeAXf5HeDwyQ8NZqoYWidnoOfTg97Z+xMk2Wlij04Pg4cOutJJycPl37m5kZEtR3
7vScN/0GGzvj3sREbVbOPXuCJ4ypKffnAwPA5z4Xfi0//jG9Pn0auOyy1mtX7YxL4IgbYm7fPmrr
zBtvAFde2Vy5uM3yIrVRjh8np0YOA9oOLC0B555LWX137y5Of4260ClSeDxZnEXDHDMuuST5+ycL
o3IRRSA/o7X+WbRmpVQXMowRniZTU8DTTwNf/Sppg155pTUnoDBBgQdygITUgwfT7bx+E9/yMmnB
T5wgYcKOBQ4A559PwsKhQyQwKEUxwl3s2wfMz9N97u+vjb7y6qu0+Pr4x/0HwaEh93FfeSVc2Lnt
ttodh5MnW69dtTMugSOuNuqGG4ALL6z97B3vaG4yZg17Zye1uUaP1Y6atdtuq91RK1t/lZjj5cPs
ZxMTyd8/WRiVjDCbFgCfBfD7oIydu0HmKv8ubVuakDI1aw5URyvbvIVdW9Z2ZnYMcTsb58AA2Xyz
M+bERK2tOP/OdQwXrqybrod9jErF/7fd3VofOeJ/TttWvR2j97QbcW2o/dplM33Q9nto9FgLC1qv
W+f5XrQDZrbikZHyXXcrz2GtijlmyP0rNiiCUydIi74E4NbqYxGASrtgIWVqvnYtWtkhKezaOJrI
0FB0B65m8Jv47GQ8LEyYQgZfhy3EBAnHLgHeJWDb9bNpU+1v7IXEqlX+5zTDMiblsBeGeNSXC1e7
3LatuXtnRgZq5ljt6AzGC/+uLvd4UvT+5XJqL3J5hVpaWQZpBbIQyANNVqrmKY9prW/UWv969fGf
q4VrKUZGatOx522DlyRh21ZsWvHSS2TCkTZsqz48DBw+7JVrZMRLxtPdDfzwh3Qv+vroM94+HxkB
1q6tPeYHP1h/HjaNOXDA+2zLFqDLSofV2Un+BHb9LC/X/ubxx72EQkoBDz7of428FTk4CDzwQDZb
huaWdRIOgkK6rFtXm6Bq7Vrga19rrq2Yfg8bNjR+rHY0WdmwgZ7ffBP4zGdqv1taAr7wBa9/vfvd
xZsjXE7tYsKSPknZ7ot5iRAokGut3wTwhFLKx72ttWjXAeyNN7zXWWQpveUWcjRZWal3nOT3Z8+S
wHv77WQjbjum7N7t/ae/H7jnnvrzsE2oacu9caP334svJru9J5+kLJw25rJTKWDrVhLoOzqAb37T
/R+GJ/eXX27OuS4OphNrEg6CQjR4Qj7vPKrzqBPz8eO1bfPFF4Hf/d3mysJ+DwMD5CfRqIDQjs5g
XHeuRcjycu148Pzz2cwRzQh77bioyoN2lRuEFAhToQO4G8ArAO4EcFv18bW0VfchZWpi48Ef3u5l
W+WikdYWJCfZycrOOeg67G38zk63Hau5pT435z6PaRpjXh/Hn1dK6+3b3eVYXAw2cQnbxs/DHtCM
s97fX8w2XDb82qr5uStefRQzD24jnZ3e/9avb669+Jl9CeEEmQzY41KzpkVB+LWtuPdSTCCyQWy/
2wMUxIZ8p+uRdsFCytR87TpoZvDLgrTsOhcWaBLPyoEr6DrMbJqmoGL/znYAdQnUbMc9NERCO//G
PK6fnXeQI2iUgTevyXBlhRaWIowng19btZP6cDuLMzFzG7HbWrN9OwkBoV3tj/2uu1KhMWR8vHYs
SQNX2yqjsNcubahS0XrDhmhZrhutk3apyyJTCIG8iI+0BPKir3TTKl/WDlxh18GCih1dxf6NnyZw
cZGcNP006Eq5BW0z+6aZqZAF+1Wrok/GmzZRGbq6qH6L2J6EcPzaqvk5RwPi57j32lyEJtG3k1gM
tqNTp9bFuG5zp/ajH20s2k0RBLgi1GVWRL3WRuukneqyqBRCIK+aq7xcfZwB8DaAl9IuWEiZmq9d
B0Xf4kurfCxcjI1FW+VHJUjbFOU6wnYs/IQlOxqKbQawfbv3nSmc79njLiNrna+5JvokNzzsL+wL
5cGvrSbVF7mP7NpF7a8oY0/RlRNJw/eBF/lZXLff+GiOe42aHxVBgGunNhT1Whutk3aqy6JSCIG8
5sfkBLoHwB+lXbCQcjRZteUkLa0HCxerVnmDuJ9ddhyanRTCFgpc7oWF2nqxbcft85uDG5cxiv18
nOsxJ1Jb2BfKRZraRnPxWKRFW9GVE0lj3oeJiWyEcXPR7jc+sX9PGQW4dmpDUa/V9bso40s71WVR
KZxA/rM/AYfTLljI+ZuqWD82baJBcmysmDa45qSRhoDX1VU7KTWL36TAA9DkpFvQtrWGYZpyQNTL
PwAAIABJREFUU1Du6fF+z9rvjo5asxFzcIsy0DWiPVtZ0bq3N7qwLxSXNLWNZgKpJBbBQmOYi/ig
sTWpxZnZpkZH/XcQGxXE4tg1C/litoWxMblfRaUQAjmAXzMeewH8EYD70y5YSJmar10HpsZicjKV
UzSFOWkkpU0zJxg+fl9fMgsSv8nE5TDp5zC3d2+4tseOgDAxQZORucBoRpgyy9PbG71uRKtRfhYX
vX6RxsLKTCBVJA15uxE10lRSizPTR8VvPGlG+A/SwAvFwgxQIPeruGQhkAfGIa/yYQAfqj5+qWpL
Ph/hf6Xj9dfpuaMD+PrX8y2LC06oMz0N3HxzMsc0Y6hqDfT2UiIbOz54I9iJDjim7qOP0nu/uL8P
PUTPSgFPPUWxmvfs8Y+JvG8f0NNDrzs7KR70qVOU4MMsix2LN2qMXzO+95kzVN4ocYEl0UP5WV4G
KhV6ff75yd/L2Vl6TrJPC/Hh3Ah33hl8j5OK7c1x3p96yn+sbSa+9fIycPo0vR4dlTjkRYbbwuWX
03uJG9/GhEnsAK50fHZF2iuFkDI1t9TxYceOYq9Q09C4skd/R0f6125qlzg0nyvVs1mWqGVix0vz