-
Notifications
You must be signed in to change notification settings - Fork 475
/
homework.tex
539 lines (448 loc) · 13.4 KB
/
homework.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
\documentclass{article}
\usepackage{fancyhdr}
\usepackage{extramarks}
\usepackage{amsmath}
\usepackage{amsthm}
\usepackage{amsfonts}
\usepackage{tikz}
\usepackage[plain]{algorithm}
\usepackage{algpseudocode}
\usetikzlibrary{automata,positioning}
%
% Basic Document Settings
%
\topmargin=-0.45in
\evensidemargin=0in
\oddsidemargin=0in
\textwidth=6.5in
\textheight=9.0in
\headsep=0.25in
\linespread{1.1}
\pagestyle{fancy}
\lhead{\hmwkAuthorName}
\chead{\hmwkClass\ (\hmwkClassInstructor\ \hmwkClassTime): \hmwkTitle}
\rhead{\firstxmark}
\lfoot{\lastxmark}
\cfoot{\thepage}
\renewcommand\headrulewidth{0.4pt}
\renewcommand\footrulewidth{0.4pt}
\setlength\parindent{0pt}
%
% Create Problem Sections
%
\newcommand{\enterProblemHeader}[1]{
\nobreak\extramarks{}{Problem \arabic{#1} continued on next page\ldots}\nobreak{}
\nobreak\extramarks{Problem \arabic{#1} (continued)}{Problem \arabic{#1} continued on next page\ldots}\nobreak{}
}
\newcommand{\exitProblemHeader}[1]{
\nobreak\extramarks{Problem \arabic{#1} (continued)}{Problem \arabic{#1} continued on next page\ldots}\nobreak{}
\stepcounter{#1}
\nobreak\extramarks{Problem \arabic{#1}}{}\nobreak{}
}
\setcounter{secnumdepth}{0}
\newcounter{partCounter}
\newcounter{homeworkProblemCounter}
\setcounter{homeworkProblemCounter}{1}
\nobreak\extramarks{Problem \arabic{homeworkProblemCounter}}{}\nobreak{}
%
% Homework Problem Environment
%
% This environment takes an optional argument. When given, it will adjust the
% problem counter. This is useful for when the problems given for your
% assignment aren't sequential. See the last 3 problems of this template for an
% example.
%
\newenvironment{homeworkProblem}[1][-1]{
\ifnum#1>0
\setcounter{homeworkProblemCounter}{#1}
\fi
\section{Problem \arabic{homeworkProblemCounter}}
\setcounter{partCounter}{1}
\enterProblemHeader{homeworkProblemCounter}
}{
\exitProblemHeader{homeworkProblemCounter}
}
%
% Homework Details
% - Title
% - Due date
% - Class
% - Section/Time
% - Instructor
% - Author
%
\newcommand{\hmwkTitle}{Homework\ \#2}
\newcommand{\hmwkDueDate}{February 12, 2014}
\newcommand{\hmwkClass}{Calculus}
\newcommand{\hmwkClassTime}{Section A}
\newcommand{\hmwkClassInstructor}{Professor Isaac Newton}
\newcommand{\hmwkAuthorName}{\textbf{Josh Davis} \and \textbf{Davis Josh}}
%
% Title Page
%
\title{
\vspace{2in}
\textmd{\textbf{\hmwkClass:\ \hmwkTitle}}\\
\normalsize\vspace{0.1in}\small{Due\ on\ \hmwkDueDate\ at 3:10pm}\\
\vspace{0.1in}\large{\textit{\hmwkClassInstructor\ \hmwkClassTime}}
\vspace{3in}
}
\author{\hmwkAuthorName}
\date{}
\renewcommand{\part}[1]{\textbf{\large Part \Alph{partCounter}}\stepcounter{partCounter}\\}
%
% Various Helper Commands
%
% Useful for algorithms
\newcommand{\alg}[1]{\textsc{\bfseries \footnotesize #1}}
% For derivatives
\newcommand{\deriv}[1]{\frac{\mathrm{d}}{\mathrm{d}x} (#1)}
% For partial derivatives
\newcommand{\pderiv}[2]{\frac{\partial}{\partial #1} (#2)}
% Integral dx
\newcommand{\dx}{\mathrm{d}x}
% Alias for the Solution section header
\newcommand{\solution}{\textbf{\large Solution}}
% Probability commands: Expectation, Variance, Covariance, Bias
\newcommand{\E}{\mathrm{E}}
\newcommand{\Var}{\mathrm{Var}}
\newcommand{\Cov}{\mathrm{Cov}}
\newcommand{\Bias}{\mathrm{Bias}}
\begin{document}
\maketitle
\pagebreak
\begin{homeworkProblem}
Give an appropriate positive constant \(c\) such that \(f(n) \leq c \cdot
g(n)\) for all \(n > 1\).
\begin{enumerate}
\item \(f(n) = n^2 + n + 1\), \(g(n) = 2n^3\)
\item \(f(n) = n\sqrt{n} + n^2\), \(g(n) = n^2\)
\item \(f(n) = n^2 - n + 1\), \(g(n) = n^2 / 2\)
\end{enumerate}
\textbf{Solution}
We solve each solution algebraically to determine a possible constant
\(c\).
\\
\textbf{Part One}
\[
\begin{split}
n^2 + n + 1 &=
\\
&\leq n^2 + n^2 + n^2
\\
&= 3n^2
\\
&\leq c \cdot 2n^3
\end{split}
\]
Thus a valid \(c\) could be when \(c = 2\).
\\
\textbf{Part Two}
\[
\begin{split}
n^2 + n\sqrt{n} &=
\\
&= n^2 + n^{3/2}
\\
&\leq n^2 + n^{4/2}
\\
&= n^2 + n^2
\\
&= 2n^2
\\
&\leq c \cdot n^2
\end{split}
\]
Thus a valid \(c\) is \(c = 2\).
\\
\textbf{Part Three}
\[
\begin{split}
n^2 - n + 1 &=
\\
&\leq n^2
\\
&\leq c \cdot n^2/2
\end{split}
\]
Thus a valid \(c\) is \(c = 2\).
\end{homeworkProblem}
\pagebreak
\begin{homeworkProblem}
Let \(\Sigma = \{0, 1\}\). Construct a DFA \(A\) that recognizes the
language that consists of all binary numbers that can be divided by 5.
\\
Let the state \(q_k\) indicate the remainder of \(k\) divided by 5. For
example, the remainder of 2 would correlate to state \(q_2\) because \(7
\mod 5 = 2\).
\begin{figure}[h]
\centering
\begin{tikzpicture}[shorten >=1pt,node distance=2cm,on grid,auto]
\node[state, accepting, initial] (q_0) {$q_0$};
\node[state] (q_1) [right=of q_0] {$q_1$};
\node[state] (q_2) [right=of q_1] {$q_2$};
\node[state] (q_3) [right=of q_2] {$q_3$};
\node[state] (q_4) [right=of q_3] {$q_4$};
\path[->]
(q_0)
edge [loop above] node {0} (q_0)
edge node {1} (q_1)
(q_1)
edge node {0} (q_2)
edge [bend right=-30] node {1} (q_3)
(q_2)
edge [bend left] node {1} (q_0)
edge [bend right=-30] node {0} (q_4)
(q_3)
edge node {1} (q_2)
edge [bend left] node {0} (q_1)
(q_4)
edge node {0} (q_3)
edge [loop below] node {1} (q_4);
\end{tikzpicture}
\caption{DFA, \(A\), this is really beautiful, ya know?}
\label{fig:multiple5}
\end{figure}
\textbf{Justification}
\\
Take a given binary number, \(x\). Since there are only two inputs to our
state machine, \(x\) can either become \(x0\) or \(x1\). When a 0 comes
into the state machine, it is the same as taking the binary number and
multiplying it by two. When a 1 comes into the machine, it is the same as
multipying by two and adding one.
\\
Using this knowledge, we can construct a transition table that tell us
where to go:
\begin{table}[ht]
\centering
\begin{tabular}{c || c | c | c | c | c}
& \(x \mod 5 = 0\)
& \(x \mod 5 = 1\)
& \(x \mod 5 = 2\)
& \(x \mod 5 = 3\)
& \(x \mod 5 = 4\)
\\
\hline
\(x0\) & 0 & 2 & 4 & 1 & 3 \\
\(x1\) & 1 & 3 & 0 & 2 & 4 \\
\end{tabular}
\end{table}
Therefore on state \(q_0\) or (\(x \mod 5 = 0\)), a transition line should
go to state \(q_0\) for the input 0 and a line should go to state \(q_1\)
for input 1. Continuing this gives us the Figure~\ref{fig:multiple5}.
\end{homeworkProblem}
\begin{homeworkProblem}
Write part of \alg{Quick-Sort($list, start, end$)}
\begin{algorithm}[]
\begin{algorithmic}[1]
\Function{Quick-Sort}{$list, start, end$}
\If{$start \geq end$}
\State{} \Return{}
\EndIf{}
\State{} $mid \gets \Call{Partition}{list, start, end}$
\State{} \Call{Quick-Sort}{$list, start, mid - 1$}
\State{} \Call{Quick-Sort}{$list, mid + 1, end$}
\EndFunction{}
\end{algorithmic}
\caption{Start of QuickSort}
\end{algorithm}
\end{homeworkProblem}
\pagebreak
\begin{homeworkProblem}
Suppose we would like to fit a straight line through the origin, i.e.,
\(Y_i = \beta_1 x_i + e_i\) with \(i = 1, \ldots, n\), \(\E [e_i] = 0\),
and \(\Var [e_i] = \sigma^2_e\) and \(\Cov[e_i, e_j] = 0, \forall i \neq
j\).
\\
\part
Find the least squares esimator for \(\hat{\beta_1}\) for the slope
\(\beta_1\).
\\
\solution
To find the least squares estimator, we should minimize our Residual Sum
of Squares, RSS:
\[
\begin{split}
RSS &= \sum_{i = 1}^{n} {(Y_i - \hat{Y_i})}^2
\\
&= \sum_{i = 1}^{n} {(Y_i - \hat{\beta_1} x_i)}^2
\end{split}
\]
By taking the partial derivative in respect to \(\hat{\beta_1}\), we get:
\[
\pderiv{
\hat{\beta_1}
}{RSS}
= -2 \sum_{i = 1}^{n} {x_i (Y_i - \hat{\beta_1} x_i)}
= 0
\]
This gives us:
\[
\begin{split}
\sum_{i = 1}^{n} {x_i (Y_i - \hat{\beta_1} x_i)}
&= \sum_{i = 1}^{n} {x_i Y_i} - \sum_{i = 1}^{n} \hat{\beta_1} x_i^2
\\
&= \sum_{i = 1}^{n} {x_i Y_i} - \hat{\beta_1}\sum_{i = 1}^{n} x_i^2
\end{split}
\]
Solving for \(\hat{\beta_1}\) gives the final estimator for \(\beta_1\):
\[
\begin{split}
\hat{\beta_1}
&= \frac{
\sum {x_i Y_i}
}{
\sum x_i^2
}
\end{split}
\]
\pagebreak
\part
Calculate the bias and the variance for the estimated slope
\(\hat{\beta_1}\).
\\
\solution
For the bias, we need to calculate the expected value
\(\E[\hat{\beta_1}]\):
\[
\begin{split}
\E[\hat{\beta_1}]
&= \E \left[ \frac{
\sum {x_i Y_i}
}{
\sum x_i^2
}\right]
\\
&= \frac{
\sum {x_i \E[Y_i]}
}{
\sum x_i^2
}
\\
&= \frac{
\sum {x_i (\beta_1 x_i)}
}{
\sum x_i^2
}
\\
&= \frac{
\sum {x_i^2 \beta_1}
}{
\sum x_i^2
}
\\
&= \beta_1 \frac{
\sum {x_i^2 \beta_1}
}{
\sum x_i^2
}
\\
&= \beta_1
\end{split}
\]
Thus since our estimator's expected value is \(\beta_1\), we can conclude
that the bias of our estimator is 0.
\\
For the variance:
\[
\begin{split}
\Var[\hat{\beta_1}]
&= \Var \left[ \frac{
\sum {x_i Y_i}
}{
\sum x_i^2
}\right]
\\
&=
\frac{
\sum {x_i^2}
}{
\sum x_i^2 \sum x_i^2
} \Var[Y_i]
\\
&=
\frac{
\sum {x_i^2}
}{
\sum x_i^2 \sum x_i^2
} \Var[Y_i]
\\
&=
\frac{
1
}{
\sum x_i^2
} \Var[Y_i]
\\
&=
\frac{
1
}{
\sum x_i^2
} \sigma^2
\\
&=
\frac{
\sigma^2
}{
\sum x_i^2
}
\end{split}
\]
\end{homeworkProblem}
\pagebreak
\begin{homeworkProblem}
Prove a polynomial of degree \(k\), \(a_kn^k + a_{k - 1}n^{k - 1} + \hdots
+ a_1n^1 + a_0n^0\) is a member of \(\Theta(n^k)\) where \(a_k \hdots a_0\)
are nonnegative constants.
\begin{proof}
To prove that \(a_kn^k + a_{k - 1}n^{k - 1} + \hdots + a_1n^1 +
a_0n^0\), we must show the following:
\[
\exists c_1 \exists c_2 \forall n \geq n_0,\ {c_1 \cdot g(n) \leq
f(n) \leq c_2 \cdot g(n)}
\]
For the first inequality, it is easy to see that it holds because no
matter what the constants are, \(n^k \leq a_kn^k + a_{k - 1}n^{k - 1} +
\hdots + a_1n^1 + a_0n^0\) even if \(c_1 = 1\) and \(n_0 = 1\). This
is because \(n^k \leq c_1 \cdot a_kn^k\) for any nonnegative constant,
\(c_1\) and \(a_k\).
\\
Taking the second inequality, we prove it in the following way.
By summation, \(\sum\limits_{i=0}^k a_i\) will give us a new constant,
\(A\). By taking this value of \(A\), we can then do the following:
\[
\begin{split}
a_kn^k + a_{k - 1}n^{k - 1} + \hdots + a_1n^1 + a_0n^0 &=
\\
&\leq (a_k + a_{k - 1} \hdots a_1 + a_0) \cdot n^k
\\
&= A \cdot n^k
\\
&\leq c_2 \cdot n^k
\end{split}
\]
where \(n_0 = 1\) and \(c_2 = A\). \(c_2\) is just a constant. Thus the
proof is complete.
\end{proof}
\end{homeworkProblem}
\pagebreak
%
% Non sequential homework problems
%
% Jump to problem 18
\begin{homeworkProblem}[18]
Evaluate \(\sum_{k=1}^{5} k^2\) and \(\sum_{k=1}^{5} (k - 1)^2\).
\end{homeworkProblem}
% Continue counting to 19
\begin{homeworkProblem}
Find the derivative of \(f(x) = x^4 + 3x^2 - 2\)
\end{homeworkProblem}
% Go back to where we left off
\begin{homeworkProblem}[6]
Evaluate the integrals
\(\int_0^1 (1 - x^2) \dx\)
and
\(\int_1^{\infty} \frac{1}{x^2} \dx\).
\end{homeworkProblem}
\end{document}