-
Notifications
You must be signed in to change notification settings - Fork 1.2k
/
Copy pathRSI Pattern Recognition backtest.py
390 lines (308 loc) · 14.3 KB
/
RSI Pattern Recognition backtest.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
# coding: utf-8
# In[1]:
#relative strength index(rsi) is another popular indicator for technical analysis
#actually i believe its kinda bull shit
#normally i read stuff on trading view wiki
#its not like i work there and try to promote it
#trading view wiki is a very detailed encyclopedia for different indicators
#plz refer to the following link for more details
# https://www.tradingview.com/wiki/Relative_Strength_Index_(RSI)
#on trading view wiki, there are a couple of strategies to use rsi
#the simplest one is overbought/oversold
#that is what this script is about
#we just set upper/lower boundaries capped at 30/70 for rsi
#if rsi exceeds the bound, we bet the stock would go under price correction
#another one is called divergence
#rsi goes up and price actually goes down
#the inventor of rsi called wilder believes bearish rsi divergence creates a selling opportunity
#but his protege cardwell believes bearish divergence only occurs in a bullish trend
#so their ideas basically contradict to each other
#i would undoubtedly give up on this bs divergence strategy
#the last one is called failure swing
#its kinda like a double bottom pattern in price itself
#except this strategy is a pattern recognition on rsi
#since i have written bottom w pattern for bollinger bands
#i would not do it here
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import fix_yahoo_finance as yf
# In[2]:
#smoothed moving average
#for details plz refer to wikipedia
# https://en.wikipedia.org/wiki/Moving_average#Modified_moving_average
def smma(series,n):
output=[series[0]]
for i in range(1,len(series)):
temp=output[-1]*(n-1)+series[i]
output.append(temp/n)
return output
# In[3]:
#calculating rsi is very simple
#except there are several versions of moving average for rsi
#simple moving average, exponentially weighted moving average, etc
#in this script, we use smoothed moving average(the authentic way)
def rsi(data,n=14):
delta=data.diff().dropna()
up=np.where(delta>0,delta,0)
down=np.where(delta<0,-delta,0)
rs=np.divide(smma(up,n),smma(down,n))
output=100-100/(1+rs)
return output[n-1:]
# In[4]:
#signal generation
#it is really easy
#when rsi goes above 70, we short the stock
#we bet the stock price would fall
#vice versa
def signal_generation(df,method,n=14):
df['rsi']=0.0
df['rsi'][n:]=method(df['Close'],n=14)
df['positions']=np.select([df['rsi']<30,df['rsi']>70], \
[1,-1],default=0)
df['signals']=df['positions'].diff()
return df[n:]
# In[5]:
#plotting
def plot(new,ticker):
#the first plot is the actual close price with long/short positions
fig=plt.figure(figsize=(10,10))
ax=fig.add_subplot(211)
new['Close'].plot(label=ticker)
ax.plot(new.loc[new['signals']==1].index,
new['Close'][new['signals']==1],
label='LONG',lw=0,marker='^',c='g')
ax.plot(new.loc[new['signals']==-1].index,
new['Close'][new['signals']==-1],
label='SHORT',lw=0,marker='v',c='r')
plt.legend(loc='best')
plt.grid(True)
plt.title('Positions')
plt.xlabel('Date')
plt.ylabel('price')
plt.show()
#the second plot is rsi with overbought/oversold interval capped at 30/70
bx=plt.figure(figsize=(10,10)).add_subplot(212,sharex=ax)
new['rsi'].plot(label='relative strength index',c='#522e75')
bx.fill_between(new.index,30,70,alpha=0.5,color='#f22f08')
bx.text(new.index[-45],75,'overbought',color='#594346',size=12.5)
bx.text(new.index[-45],25,'oversold',color='#594346',size=12.5)
plt.xlabel('Date')
plt.ylabel('value')
plt.title('RSI')
plt.legend(loc='best')
plt.grid(True)
plt.show()
# In[6]:
#pattern recognition
#do u really think i would write such an easy script?
#dont be naive, here is another way of using rsi
#unlike double bottom pattern for bollinger bands
#this is head-shoulder pattern directly on rsi instead of price
#well, it is actually named head and shoulders
#but i refused to do free marketing for the shampoo
#cuz that shampoo doesnt work at all!
#the details of head-shoulder pattern could be found in this link
# https://www.investopedia.com/terms/h/head-shoulders.asp
#any way, this pattern recognition is similar to the one in bollinger bands
#plz refer to bollinger bands for a detailed explanation
# https://github.com/je-suis-tm/quant-trading/blob/master/Bollinger%20Bands%20Pattern%20Recognition%20backtest.py
def pattern_recognition(df,method,lag=14):
df['rsi']=0.0
df['rsi'][lag:]=method(df['Close'],lag)
#as usual, period is defined as the horizon for finding the pattern
period=25
#delta is the threshold of the difference between two prices
#if the difference is smaller than delta
#we can conclude two prices are not significantly different from each other
#the significant level is defined as delta
delta=0.2
#these are the multipliers of delta
#we wanna make sure there is head and shoulders are significantly larger than other nodes
#the significant level is defined as head/shoulder multiplier*delta
head=1.1
shoulder=1.1
df['signals']=0
df['cumsum']=0
df['coordinates']=''
#now these are the parameters set by us based on experience
#entry_rsi is the rsi when we enter a trade
#we would exit the trade based on two conditions
#one is that we hold the stock for more than five days
#the variable for five days is called exit_days
#we use a variable called counter to keep track of it
#two is that rsi has increased more than 4 since the entry
#the variable for 4 is called exit_rsi
#when either condition is triggered, we exit the trade
#this is a lazy way to exit the trade
#cuz i dont wanna import indicators from other scripts
#i would suggest people to use other indicators such as macd or bollinger bands
#exiting trades based on rsi is definitely inefficient and unprofitable
entry_rsi=0.0
counter=0
exit_rsi=4
exit_days=5
#signal generation
#plz refer to the following link for pattern visualization
# https://github.com/je-suis-tm/quant-trading/blob/master/preview/rsi%20head-shoulder%20pattern.png
#the idea is to start with the first node i
#we look backwards and find the head node j with maximum value in pattern finding period
#between node i and node j, we find a node k with its value almost the same as node i
#started from node j to left, we find a node l with its value almost the same as node i
#between the left beginning and node l, we find a node m with its value almost the same as node i
#after that, we find the shoulder node n with maximum value between node m and node l
#finally, we find the shoulder node o with its value almost the same as node n
for i in range(period+lag,len(df)):
#this is pretty much the same idea as in bollinger bands
#except we have two variables
#one for shoulder and one for the bottom nodes
moveon=False
top=0.0
bottom=0.0
#we have to make sure no holding positions
#and the close price is not the maximum point of pattern finding horizon
if (df['cumsum'][i]==0) and \
(df['Close'][i]!=max(df['Close'][i-period:i])):
#get the head node j with maximum value in pattern finding period
#note that dataframe is in datetime index
#we wanna convert the result of idxmax to a numerical index number
j=df.index.get_loc(df['Close'][i-period:i].idxmax())
#if the head node j is significantly larger than node i
#we would move on to the next phrase
if (np.abs(df['Close'][j]-df['Close'][i])>head*delta):
bottom=df['Close'][i]
moveon=True
#we try to find node k between node j and node i
#if node k is not significantly different from node i
#we would move on to the next phrase
if moveon==True:
moveon=False
for k in range(j,i):
if (np.abs(df['Close'][k]-bottom)<delta):
moveon=True
break
#we try to find node l between node j and the end of pattern finding horizon
#note that we start from node j to the left
#cuz we need to find another bottom node m later which would start from the left beginning
#this way we can make sure we would find a shoulder node n between node m and node l
#if node l is not significantly different from node i
#we would move on to the next phrase
if moveon==True:
moveon=False
for l in range(j,i-period+1,-1):
if (np.abs(df['Close'][l]-bottom)<delta):
moveon=True
break
#we try to find node m between node l and the end of pattern finding horizon
#this time we start from left to right as usual
#if node m is not significantly different from node i
#we would move on to the next phrase
if moveon==True:
moveon=False
for m in range(i-period,l):
if (np.abs(df['Close'][m]-bottom)<delta):
moveon=True
break
#get the shoulder node n with maximum value between node m and node l
#note that dataframe is in datetime index
#we wanna convert the result of idxmax to a numerical index number
#if node n is significantly larger than node i and significantly smaller than node j
#we would move on to the next phrase
if moveon==True:
moveon=False
n=df.index.get_loc(df['Close'][m:l].idxmax())
if (df['Close'][n]-bottom>shoulder*delta) and \
(df['Close'][j]-df['Close'][n]>shoulder*delta):
top=df['Close'][n]
moveon=True
#we try to find shoulder node o between node k and node i
#if node o is not significantly different from node n
#we would set up the signals and coordinates for visualization
#we also need to refresh cumsum and entry_rsi for exiting the trade
#note that moveon is still set as True
#it would help the algo to ignore this round of iteration for exiting the trade
if moveon==True:
for o in range(k,i):
if (np.abs(df['Close'][o]-top)<delta):
df.at[df.index[i],'signals']=-1
df.at[df.index[i],'coordinates']='%s,%s,%s,%s,%s,%s,%s'%(m,n,l,j,k,o,i)
df['cumsum']=df['signals'].cumsum()
entry_rsi=df['rsi'][i]
moveon=True
break
#each time we have a holding position
#counter would steadily increase
#if either of the exit conditions is met
#we exit the trade with long position
#and we refresh counter, entry_rsi and cumsum
#you may wonder why do we need cumsum?
#well, this is for holding positions in case you wanna check on portfolio performance
if entry_rsi!=0 and moveon==False:
counter+=1
if (df['rsi'][i]-entry_rsi>exit_rsi) or \
(counter>exit_days):
df.at[df.index[i],'signals']=1
df['cumsum']=df['signals'].cumsum()
counter=0
entry_rsi=0
return df
#visualize the pattern
def pattern_plot(new,ticker):
#this part is to get a small slice of dataframe
#so we can get a clear view of head-shoulder pattern
a,b=list(new[new['signals']!=0].iloc[2:4].index)
#extract coordinates for head-shoulder pattern visualization
temp=list(map(int,new['coordinates'][a].split(',')))
indexlist=list(map(lambda x:new.index[x],temp))
#slicing
c=new.index.get_loc(b)
newbie=new[temp[0]-30:c+20]
#first plot is always price with positions
ax=plt.figure(figsize=(10,10)).add_subplot(211)
newbie['Close'].plot(label=ticker)
ax.plot(newbie['Close'][newbie['signals']==1],marker='^',markersize=12, \
lw=0,c='g',label='LONG')
ax.plot(newbie['Close'][newbie['signals']==-1],marker='v',markersize=12, \
lw=0,c='r',label='SHORT')
plt.legend(loc=0)
plt.title('Positions')
plt.xlabel('Date')
plt.ylabel('price')
plt.grid(True)
plt.show()
#second plot is head-shoulder pattern on rsi
bx=plt.figure(figsize=(10,10)).add_subplot(212,sharex=ax)
newbie['rsi'].plot(label='relative strength index',c='#f4ed71')
#we plot the overbought/oversold interval, positions and pattern
bx.fill_between(newbie.index,30,70,alpha=0.6,label='overbought/oversold range',color='#000d29')
bx.plot(newbie['rsi'][indexlist], \
lw=3,alpha=0.7,marker='o', \
markersize=6,c='#8d2f23',label='head-shoulder pattern')
bx.plot(newbie['rsi'][newbie['signals']==1],marker='^',markersize=12, \
lw=0,c='g',label='LONG')
bx.plot(newbie['rsi'][newbie['signals']==-1],marker='v',markersize=12, \
lw=0,c='r',label='SHORT')
#put some captions on head and shoulders
for i in [(1,'Shoulder'),(3,'Head'),(5,'Shoulder')]:
plt.text(indexlist[i[0]], newbie['rsi'][indexlist[i[0]]]+2, \
'%s'%i[1],fontsize=10,color='#e4ebf2', \
horizontalalignment='center', \
verticalalignment='center')
plt.title('RSI')
plt.legend(loc=1)
plt.xlabel('Date')
plt.ylabel('value')
plt.grid(True)
plt.show()
# In[7]:
def main():
ticker='FCAU'
startdate='2016-01-01'
enddate='2018-01-01'
df=yf.download(ticker,start=startdate,end=enddate)
new=signal_generation(df,rsi,n=14)
plot(new,ticker)
#how to calculate stats could be found from my other code called Heikin-Ashi
# https://github.com/je-suis-tm/quant-trading/blob/master/heikin%20ashi%20backtest.py
if __name__ == '__main__':
main()