-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnum_py.py
136 lines (112 loc) · 2.87 KB
/
num_py.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
import numpy as np
print(np.array([1,2,3,5,6]))
# array_dimensions
a = np.array(42)
b = np.array([1, 2, 3, 4, 5])
c = np.array([[1, 2, 3], [4, 5, 6]])
d = np.array([[[1, 2, 3], [4, 5, 6]], [[1, 2, 3], [4, 5, 6]]])
# arange()
np.arange(1, 20 , 2,
dtype = np.float32)
# linespace
np.linspace(3.5, 10, 3)
# empty()
np.empty([4, 3],
dtype = np.int32)
# ones()
np.ones([4, 3],
dtype = np.int32,
order = 'f')
#zeros()
np.zeros([4, 3],
dtype = np.int32)
# Access Array Elements
# 1D
arr = np.array([1, 2, 3, 4])
print(arr[1])
# 2D
arr = np.array([[1,2,3,4,5], [6,7,8,9,10]])
print('2nd element on 1st dim: ', arr[0, 1])
# 3D
arr = np.array([[[1, 2, 3], [4, 5, 6]], [[7, 8, 9], [10, 11, 12]]])
print(arr[0, 1, 2])
# Slicing
# 1D
arr = np.array([1, 2, 3, 4, 5, 6, 7])
print(arr[1:5])
# negative slicing
arr = np.array([1, 2, 3, 4, 5, 6, 7])
print(arr[-3:-1])
# 2D
arr = np.array([[1, 2, 3, 4, 5], [6, 7, 8, 9, 10]])
print(arr[1, 1:4])
arr = np.array([[1, 2, 3, 4, 5], [6, 7, 8, 9, 10]])
print(arr[0:2, 2])
arr = np.array([[1, 2, 3, 4, 5], [6, 7, 8, 9, 10]])
print(arr[0:2, 1:4])
# boolean array indexing example
cond = arr > 0 # cond is a boolean array
temp = arr[cond]
print(temp)
# copy&view
# Make a copy, change the original array, and display both arrays
arr = np.array([1, 2, 3, 4, 5])
x = arr.copy()
arr[0] = 42
print(arr)
print(x)
# view
# Make a view, change the both original and view array, and display both arrays
arr = np.array([1, 2, 3, 4, 5])
x = arr.view()
arr[0] = 42
print(arr)
print(x)
# shape
arr = np.array([[1, 2, 3, 4], [5, 6, 7, 8]])
print(arr.shape)
# reshape
arr = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12])
newarr = arr.reshape(4, 3)
# 1D to 3D
arr = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12])
newarr1 = arr.reshape(2, 3, 2)
# iterating
arr = np.array([1, 2, 3])
for x in arr:
print(x)
# 2D
arr = np.array([[1, 2, 3], [4, 5, 6]])
for x in arr:
for y in x:
print(y)
# 3d
arr = np.array([[[1, 2, 3], [4, 5, 6]], [[7, 8, 9], [10, 11, 12]]])
for x in arr:
print(x)
# split
arr = np.array([1, 2, 3, 4, 5, 6])
newarr = np.array_split(arr, 3)
print(newarr)
# split array
arr = np.array([1, 2, 3, 4, 5, 6])
newarr = np.array_split(arr, 3)
print(newarr[0])
print(newarr[1])
print(newarr[2])
# sort
arr = np.array([[3, 2, 4], [5, 0, 1]])
print(np.sort(arr))
a = np.array([[1, 4, 2],
[3, 4, 6],
[0, -1, 5]])
print ("Row-wise sorted array:\n",
np.sort(a, axis = 0))
# create an array of sine values
a = np.array([0, np.pi / 2, np.pi])
print("Sine values of array elements:", np.sin(a))
# exponential values
a = np.array([0, 1, 2, 3])
print("Exponent of array elements:", np.exp(a))
# square root of array values
print("Square root of array elements:", np.sqrt(a))