-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
497 lines (418 loc) · 17.9 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
#!/usr/bin/env python3
import os
import sys
import torch
import logging
from pathlib import Path
import speechbrain as sb
from hyperpyyaml import load_hyperpyyaml
from speechbrain.utils.distributed import run_on_main, if_main_process
logger = logging.getLogger(__name__)
# Define training procedure
class ASR(sb.core.Brain):
def compute_forward(self, batch, stage):
"""Forward computations from the waveform batches to the output probabilities."""
batch = batch.to(self.device)
wavs, wav_lens = batch.sig
tokens_bos, _ = batch.tokens_bos
# Add augmentation if specified
if stage == sb.Stage.TRAIN:
if hasattr(self.modules, "env_corrupt"):
wavs_noise = self.modules.env_corrupt(wavs, wav_lens)
wavs = torch.cat([wavs, wavs_noise], dim=0)
wav_lens = torch.cat([wav_lens, wav_lens])
tokens_bos = torch.cat([tokens_bos, tokens_bos], dim=0)
# compute features
feats = self.hparams.compute_features(wavs)
current_epoch = self.hparams.epoch_counter.current
feats = self.modules.normalize(feats, wav_lens, epoch=current_epoch)
if stage == sb.Stage.TRAIN:
if hasattr(self.hparams, "augmentation"):
feats = self.hparams.augmentation(feats)
# forward modules
src = self.modules.CNN(feats)
enc_out, pred = self.modules.Transformer(
src, tokens_bos, wav_lens, pad_idx=self.hparams.pad_index,
)
# output layer for ctc log-probabilities
logits = self.modules.ctc_lin(enc_out)
p_ctc = self.hparams.log_softmax(logits)
# output layer for seq2seq log-probabilities
pred = self.modules.seq_lin(pred)
p_seq = self.hparams.log_softmax(pred)
# Compute outputs
hyps = None
if stage == sb.Stage.TRAIN:
hyps = None
elif stage == sb.Stage.VALID:
hyps = None
current_epoch = self.hparams.epoch_counter.current
if current_epoch % self.hparams.valid_search_interval == 0:
# for the sake of efficiency, we only perform beamsearch with limited capacity
# and no LM to give user some idea of how the AM is doing
hyps, _ = self.hparams.valid_search(enc_out.detach(), wav_lens)
elif stage == sb.Stage.TEST:
hyps, _ = self.hparams.test_search(enc_out.detach(), wav_lens)
return p_ctc, p_seq, wav_lens, hyps
def compute_objectives(self, predictions, batch, stage):
"""Computes the loss (CTC+NLL) given predictions and targets."""
(p_ctc, p_seq, wav_lens, hyps,) = predictions
ids = batch.id
tokens_eos, tokens_eos_lens = batch.tokens_eos
tokens, tokens_lens = batch.tokens
if hasattr(self.modules, "env_corrupt") and stage == sb.Stage.TRAIN:
tokens_eos = torch.cat([tokens_eos, tokens_eos], dim=0)
tokens_eos_lens = torch.cat(
[tokens_eos_lens, tokens_eos_lens], dim=0
)
tokens = torch.cat([tokens, tokens], dim=0)
tokens_lens = torch.cat([tokens_lens, tokens_lens], dim=0)
loss_seq = self.hparams.seq_cost(
p_seq, tokens_eos, length=tokens_eos_lens
).sum()
loss_ctc = self.hparams.ctc_cost(
p_ctc, tokens, wav_lens, tokens_lens
).sum()
loss = (
self.hparams.ctc_weight * loss_ctc
+ (1 - self.hparams.ctc_weight) * loss_seq
)
if stage != sb.Stage.TRAIN:
current_epoch = self.hparams.epoch_counter.current
valid_search_interval = self.hparams.valid_search_interval
if current_epoch % valid_search_interval == 0 or (
stage == sb.Stage.TEST
):
# Decode token terms to words
predicted_words = [
tokenizer.decode_ids(utt_seq).split(" ") for utt_seq in hyps
]
target_words = [wrd.split(" ") for wrd in batch.wrd]
self.wer_metric.append(ids, predicted_words, target_words)
# compute the accuracy of the one-step-forward prediction
self.acc_metric.append(p_seq, tokens_eos, tokens_eos_lens)
return loss
def on_evaluate_start(self, max_key=None, min_key=None):
"""perform checkpoint averge if needed"""
super().on_evaluate_start()
ckpts = self.checkpointer.find_checkpoints(
max_key=max_key, min_key=min_key
)
ckpt = sb.utils.checkpoints.average_checkpoints(
ckpts, recoverable_name="model", device=self.device
)
self.hparams.model.load_state_dict(ckpt, strict=True)
self.hparams.model.eval()
print("Loaded the average")
def evaluate_batch(self, batch, stage):
"""Computations needed for validation/test batches"""
with torch.no_grad():
predictions = self.compute_forward(batch, stage=stage)
loss = self.compute_objectives(predictions, batch, stage=stage)
return loss.detach()
def on_stage_start(self, stage, epoch):
"""Gets called at the beginning of each epoch"""
if stage != sb.Stage.TRAIN:
self.acc_metric = self.hparams.acc_computer()
self.wer_metric = self.hparams.error_rate_computer()
def on_stage_end(self, stage, stage_loss, epoch):
"""Gets called at the end of a epoch."""
# Compute/store important stats
stage_stats = {"loss": stage_loss}
if stage == sb.Stage.TRAIN:
self.train_stats = stage_stats
else:
stage_stats["ACC"] = self.acc_metric.summarize()
current_epoch = self.hparams.epoch_counter.current
valid_search_interval = self.hparams.valid_search_interval
if (
current_epoch % valid_search_interval == 0
or stage == sb.Stage.TEST
):
stage_stats["WER"] = self.wer_metric.summarize("error_rate")
# log stats and save checkpoint at end-of-epoch
if stage == sb.Stage.VALID and sb.utils.distributed.if_main_process():
lr = self.hparams.noam_annealing.current_lr
steps = self.optimizer_step
optimizer = self.optimizer.__class__.__name__
epoch_stats = {
"epoch": epoch,
"lr": lr,
"steps": steps,
"optimizer": optimizer,
}
self.hparams.train_logger.log_stats(
stats_meta=epoch_stats,
train_stats=self.train_stats,
valid_stats=stage_stats,
)
self.checkpointer.save_and_keep_only(
meta={"ACC": stage_stats["ACC"], "epoch": epoch},
max_keys=["ACC"],
num_to_keep=10,
)
elif stage == sb.Stage.TEST:
self.hparams.train_logger.log_stats(
stats_meta={"Epoch loaded": self.hparams.epoch_counter.current},
test_stats=stage_stats,
)
if if_main_process():
with open(self.hparams.test_wer_file, "w") as w:
self.wer_metric.write_stats(w)
# save the averaged checkpoint at the end of the evaluation stage
# delete the rest of the intermediate checkpoints
# ACC is set to 1.1 so checkpointer only keeps the averaged checkpoint
self.checkpointer.save_and_keep_only(
meta={"ACC": 1.1, "epoch": epoch},
max_keys=["ACC"],
num_to_keep=1,
)
def fit_batch(self, batch):
should_step = self.step % self.grad_accumulation_factor == 0
# Managing automatic mixed precision
if self.auto_mix_prec:
with torch.autocast(torch.device(self.device).type):
outputs = self.compute_forward(batch, sb.Stage.TRAIN)
# Losses are excluded from mixed precision to avoid instabilities
loss = self.compute_objectives(outputs, batch, sb.Stage.TRAIN)
with self.no_sync(not should_step):
self.scaler.scale(
loss / self.grad_accumulation_factor
).backward()
if should_step:
self.scaler.unscale_(self.optimizer)
if self.check_gradients(loss):
self.scaler.step(self.optimizer)
self.scaler.update()
self.zero_grad()
self.optimizer_step += 1
self.hparams.noam_annealing(self.optimizer)
else:
if self.bfloat16_mix_prec:
with torch.autocast(
device_type=torch.device(self.device).type,
dtype=torch.bfloat16,
):
outputs = self.compute_forward(batch, sb.Stage.TRAIN)
loss = self.compute_objectives(
outputs, batch, sb.Stage.TRAIN
)
else:
outputs = self.compute_forward(batch, sb.Stage.TRAIN)
loss = self.compute_objectives(outputs, batch, sb.Stage.TRAIN)
with self.no_sync(not should_step):
(loss / self.grad_accumulation_factor).backward()
if should_step:
if self.check_gradients(loss):
self.optimizer.step()
self.zero_grad()
self.optimizer_step += 1
self.hparams.noam_annealing(self.optimizer)
self.on_fit_batch_end(batch, outputs, loss, should_step)
return loss.detach().cpu()
def dataio_prepare(hparams):
"""This function prepares the datasets to be used in the brain class.
It also defines the data processing pipeline through user-defined functions."""
data_folder = hparams["data_folder"]
train_data = sb.dataio.dataset.DynamicItemDataset.from_csv(
csv_path=hparams["train_csv"], replacements={"data_root": data_folder},
)
if hparams["sorting"] == "ascending":
# we sort training data to speed up training and get better results.
train_data = train_data.filtered_sorted(sort_key="duration")
# when sorting do not shuffle in dataloader ! otherwise is pointless
hparams["train_dataloader_opts"]["shuffle"] = False
elif hparams["sorting"] == "descending":
train_data = train_data.filtered_sorted(
sort_key="duration", reverse=True
)
# when sorting do not shuffle in dataloader ! otherwise is pointless
hparams["train_dataloader_opts"]["shuffle"] = False
elif hparams["sorting"] == "random":
pass
else:
raise NotImplementedError(
"sorting must be random, ascending or descending"
)
valid_data = sb.dataio.dataset.DynamicItemDataset.from_csv(
csv_path=hparams["valid_csv"], replacements={"data_root": data_folder},
)
valid_data = valid_data.filtered_sorted(sort_key="duration")
# test is separate
test_datasets = {}
for csv_file in hparams["test_csv"]:
name = Path(csv_file).stem
test_datasets[name] = sb.dataio.dataset.DynamicItemDataset.from_csv(
csv_path=csv_file, replacements={"data_root": data_folder}
)
test_datasets[name] = test_datasets[name].filtered_sorted(
sort_key="duration"
)
datasets = [train_data, valid_data] + [i for k, i in test_datasets.items()]
valtest_datasets = [valid_data] + [i for k, i in test_datasets.items()]
# We get the tokenizer as we need it to encode the labels when creating
# mini-batches.
tokenizer = hparams["tokenizer"]
# 2. Define audio pipeline:
@sb.utils.data_pipeline.takes("wav")
@sb.utils.data_pipeline.provides("sig")
def audio_pipeline(wav):
sig = sb.dataio.dataio.read_audio(wav)
return sig
sb.dataio.dataset.add_dynamic_item(valtest_datasets, audio_pipeline)
@sb.utils.data_pipeline.takes("wav")
@sb.utils.data_pipeline.provides("sig")
def audio_pipeline_train(wav):
# Speed Perturb is done here so it is multi-threaded with the
# workers of the dataloader (faster).
if "speed_perturb" in hparams:
sig = sb.dataio.dataio.read_audio(wav)
sig = hparams["speed_perturb"](sig.unsqueeze(0)).squeeze(0)
else:
sig = sb.dataio.dataio.read_audio(wav)
return sig
sb.dataio.dataset.add_dynamic_item([train_data], audio_pipeline_train)
# 3. Define text pipeline:
@sb.utils.data_pipeline.takes("wrd")
@sb.utils.data_pipeline.provides(
"wrd", "tokens_list", "tokens_bos", "tokens_eos", "tokens"
)
def text_pipeline(wrd):
yield wrd
tokens_list = tokenizer.encode_as_ids(wrd)
yield tokens_list
tokens_bos = torch.LongTensor([hparams["bos_index"]] + (tokens_list))
yield tokens_bos
tokens_eos = torch.LongTensor(tokens_list + [hparams["eos_index"]])
yield tokens_eos
tokens = torch.LongTensor(tokens_list)
yield tokens
sb.dataio.dataset.add_dynamic_item(datasets, text_pipeline)
# 4. Set output:
sb.dataio.dataset.set_output_keys(
datasets, ["id", "sig", "wrd", "tokens_bos", "tokens_eos", "tokens"],
)
# 5. If Dynamic Batching is used, we instantiate the needed samplers.
train_batch_sampler = None
valid_batch_sampler = None
if hparams["dynamic_batching"]:
from speechbrain.dataio.sampler import DynamicBatchSampler # noqa
dynamic_hparams = hparams["dynamic_batch_sampler"]
num_buckets = dynamic_hparams["num_buckets"]
train_batch_sampler = DynamicBatchSampler(
train_data,
dynamic_hparams["max_batch_len"],
num_buckets=num_buckets,
length_func=lambda x: x["duration"],
shuffle=dynamic_hparams["shuffle_ex"],
batch_ordering=dynamic_hparams["batch_ordering"],
max_batch_ex=dynamic_hparams["max_batch_ex"],
)
valid_batch_sampler = DynamicBatchSampler(
valid_data,
dynamic_hparams["max_batch_len_val"],
num_buckets=num_buckets,
length_func=lambda x: x["duration"],
shuffle=dynamic_hparams["shuffle_ex"],
batch_ordering=dynamic_hparams["batch_ordering"],
)
return (
train_data,
valid_data,
test_datasets,
tokenizer,
train_batch_sampler,
valid_batch_sampler,
)
if __name__ == "__main__":
# CLI:
hparams_file, run_opts, overrides = sb.parse_arguments(sys.argv[1:])
with open(hparams_file) as fin:
hparams = load_hyperpyyaml(fin, overrides)
# If --distributed_launch then
# create ddp_group with the right communication protocol
sb.utils.distributed.ddp_init_group(run_opts)
# 1. # Dataset prep (parsing Librispeech)
from librispeech_prepare import prepare_librispeech # noqa
# Create experiment directory
sb.create_experiment_directory(
experiment_directory=hparams["output_folder"],
hyperparams_to_save=hparams_file,
overrides=overrides,
)
# multi-gpu (ddp) save data preparation
run_on_main(
prepare_librispeech,
kwargs={
"data_folder": hparams["data_folder"],
"tr_splits": hparams["train_splits"],
"dev_splits": hparams["dev_splits"],
"te_splits": hparams["test_splits"],
"save_folder": hparams["output_folder"],
"merge_lst": hparams["train_splits"],
"merge_name": "train.csv",
"skip_prep": hparams["skip_prep"],
},
)
# here we create the datasets objects as well as tokenization and encoding
(
train_data,
valid_data,
test_datasets,
tokenizer,
train_bsampler,
valid_bsampler,
) = dataio_prepare(hparams)
# We download the pretrained LM from HuggingFace (or elsewhere depending on
# the path given in the YAML file). The tokenizer is loaded at the same time.
run_on_main(hparams["pretrainer"].collect_files)
hparams["pretrainer"].load_collected(device=run_opts["device"])
# Trainer initialization
asr_brain = ASR(
modules=hparams["modules"],
opt_class=hparams["Adam"],
hparams=hparams,
run_opts=run_opts,
checkpointer=hparams["checkpointer"],
)
# adding objects to trainer:
asr_brain.tokenizer = hparams["tokenizer"]
train_dataloader_opts = hparams["train_dataloader_opts"]
valid_dataloader_opts = hparams["valid_dataloader_opts"]
if train_bsampler is not None:
collate_fn = None
if "collate_fn" in train_dataloader_opts:
collate_fn = train_dataloader_opts["collate_fn"]
train_dataloader_opts = {
"batch_sampler": train_bsampler,
"num_workers": hparams["num_workers"],
}
if collate_fn is not None:
train_dataloader_opts["collate_fn"] = collate_fn
if valid_bsampler is not None:
collate_fn = None
if "collate_fn" in valid_dataloader_opts:
collate_fn = valid_dataloader_opts["collate_fn"]
valid_dataloader_opts = {"batch_sampler": valid_bsampler}
if collate_fn is not None:
valid_dataloader_opts["collate_fn"] = collate_fn
# Training
asr_brain.fit(
asr_brain.hparams.epoch_counter,
train_data,
valid_data,
train_loader_kwargs=train_dataloader_opts,
valid_loader_kwargs=valid_dataloader_opts,
)
# Testing
if not os.path.exists(hparams["output_wer_folder"]):
os.makedirs(hparams["output_wer_folder"])
for k in test_datasets.keys(): # keys are test_clean, test_other etc
asr_brain.hparams.test_wer_file = os.path.join(
hparams["output_wer_folder"], f"wer_{k}.txt"
)
asr_brain.evaluate(
test_datasets[k],
max_key="ACC",
test_loader_kwargs=hparams["test_dataloader_opts"],
)