forked from EiffL/Angpow4CCL
-
Notifications
You must be signed in to change notification settings - Fork 0
/
angpow_bench1.ini
106 lines (86 loc) · 3.56 KB
/
angpow_bench1.ini
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
# #################################
# Auto correlation Dirac selection z = 1
# #################################
#
# Cl parameters : see angpow_clbase.h
# ell in [0, Lmax-1]
# ell sampling lineat up to linearStep then logarithmic. If logStep=0 ell sampling linear
# *
Lmax = 1000
linearStep = 40
logStep = 1.15
% Selection Windows : see. angpow_radial.h
% Window_t: type of selection in redshift
% . Dirac: 1 redshift
% . Gauss: gaussian selection
% . GaussGal: gaussian selection x dN/dz-galaxy function
% . TopHat: sharp cut [zmin, zmax]
% mean, width: the mean value of the z-selection and width = 1 sigma (Gauss) or 1/2 half width for TopHat
% n_sigma_cut: z in [mean - n_sigma_cut * width, mean + n_sigma_cut * width]
% */
wtype = Dirac
mean = 1.0
width = 0.0
n_sigma_cut = 5
# Control integration algorithm : see angpow_pk2cl.h
# . kmax : value in Mpc^-1 of the maximum value of k to be considered in the k-integration
# . radial_order_1: the quadrature order over the redshift axis for the first selection Window
# . chebyshev_order_1 : Order of the Chebyshev Transform for k*Sqrt[Pws]*Bessel(r(z1)*k) (first selection Window)
# . idem for radial_order_2 & chebyshev_order_2 for the second selection Window
# . n_bessel_roots_per_interval: the k-integration is performed by sum over intervales defined using
# j_l(x) roots. This parameter control how many roots to be gathered in a single intervalle where the functions
# are expended over Chebyshev polynomial series.
#
cl_kmax = 10.0
radial_order = 0
chebyshev_order = 9
n_bessel_roots_per_interval = 100
# Cosmological parameters: see angpow_cosmo.h (Simple Cosmological Universe)
# . h: the reduced Hubble constant value normalized to 100 km/s/Mpc (h = H0/100)
# . omega_matter: z=0 matter density
# . omega_baryon: z=0 baryon density
# . hasX : if omega_X is set or not
# . omega_X : z=0 general dark energy density
# . wX, waX = z=0 dark energy equation of state density w(a) = wX + waX*(1-a)
# . nb: values fixed by default
# omega Radiation = h^2 rho_gamma/rho_critic = h^2 4.6417e-31/1.879e-26;
# omega Lambda = 1 - (omegamat_ + omegarad_ + omegaX_)
# omega Curvature = (1. - (omegamat_ + omegarad_ + omegaL_ + omegaX_));
h = 0.679
omega_matter = 0.3065
omega_baryon = 0.0483
hasX = 0
omega_X =
wX =
waX =
# Cosmological distances interpolation parameters: see angpow_cosmo.h
# . z in [zmin, zmax]
# . npts: number of z to used by the interpolation
# . precision: precision of the integration 1/E(z) dz
cosmo_zmin = 0.
cosmo_zmax = 10.
cosmo_npts = 1000
cosmo_precision = 0.001
# Bessel parameters (see angpow_bessel.cc MakeBesselJImpXmin method)
# find x_min such that j_l(x_min) = jl_xmin_cut for l in [0, Lmax_for_xmin-1]
Lmax_for_xmin = 2000
jl_xmin_cut = 5e-10
# IOs
# . output_dir: directory fo output files (ex. Cls)
# . common_file_tag: tag common to all output files (ex. angpow_cls.txt)
# . quadrature_rule_ios_dir: directory where to find and/or save the quadrature files
#
output_dir = ./
common_file_tag = angpow_bench1_
quadrature_rule_ios_dir = ./data/
# Power Spectrum file (zref = 0) see angpow_powspec.h
# P(k) in Mpc^3
# . power_spectrum_input_dir: directory location
# . power_spectrum_input_file: file name
# . pw_kmin: minimal k used in the file (k in Mpc^-1)
# . pw_kmax: maximal k "
#
power_spectrum_input_dir = ./data/
power_spectrum_input_file = classgal_pk_z0.dat
pw_kmin = 1.e-5
pw_kmax = 10.