-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmatplotlib_example.py
91 lines (66 loc) · 2.87 KB
/
matplotlib_example.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
'''Matplotlib – Random Walk'''
# A random walk is a path that has no clear direction but is determined by a
# series of random decisions. For example, a grain of pollen floating on a drop
# of water moves across the surface in a random walk. It is pushed around by
# water molecules and molecular motion in a water drop happens to be random.
# See also: matplotlib_example.py
# This example uses the matplotlib.pyplot.scatter plot:
# https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.scatter.html?highlight=scatter#matplotlib.pyplot.scatter
# Ideally the following class would be saved as a module: random_walk.py
# -----------------------------------------------------------------------------
from random import choice
class RandomWalk():
'''A class to generate random walks.'''
def __init__(self, num_points=5000):
'''Initialize attributes of walk.'''
self.num_points = num_points
# all walks start at (0,0):
self.x_values = [0]
self.y_values = [0]
def fill_walk(self):
'''Calculate all the points in the walk.'''
# keep tracking the steps until the walk reaches the desired length:
while len(self.x_values) < self.num_points:
# decide on which direction to go and how far to go:
x_direction = choice([1, -1])
x_distance = choice([0, 1, 2, 3, 4])
x_step = x_direction * x_distance
y_direction = choice([1, -1])
y_distance = choice([0, 1, 2, 3, 4])
y_step = y_direction * y_distance
# reject moves that go nowhere:
if x_step == 0 and y_step == 0:
continue
# calculate the next x and y values:
next_x = self.x_values[-1] + x_step
next_y = self.y_values[-1] + y_step
self.x_values.append(next_x)
self.y_values.append(next_y)
# Ideally the following would be in it's own file and we'd import the class
# -----------------------------------------------------------------------------
import matplotlib.pyplot as plt
from matplotlib.colors import LinearSegmentedColormap
# from random_walk import RandomWalk
# colours:
a = '#69F4BD'
b = '#319589'
c = '#344D6c'
d = '#372560'
e = '#3E1B3C'
rw1 = RandomWalk(50000)
rw1.fill_walk()
# optional setting the window size:
plt.figure(figsize=(9, 5))
# make your own colour map:
cmap = LinearSegmentedColormap.from_list('mycmap', [a, b, c, d, e])
# create a list for the range needed for the colour map:
point_numbers = list(range(rw1.num_points))
# the main plot:
plt.scatter(rw1.x_values, rw1.y_values, s=1, c=point_numbers, cmap=cmap)
# emphasize the start and end points:
plt.scatter(0, 0, c='gold', s=25)
plt.scatter(rw1.x_values[-1], rw1.y_values[-1], c='red', s=25)
# title and axis size:
plt.title('Random Walk', fontsize=9)
plt.tick_params(axis='both', which='major', labelsize=7)
plt.show()