-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathbaseline.py
executable file
·262 lines (219 loc) · 9.89 KB
/
baseline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
#!/usr/bin/env python3
""" Training for baselines """
import os
import argparse
import copy
import random
import numpy as np
import torch
from torch.utils.data import DataLoader
from torch.optim.lr_scheduler import (
ChainedScheduler, LinearLR, CosineAnnealingLR)
from tabulate import tabulate
from model.feature import GRU, TCN, GCN, ASFormer
from model.impl.calf import ContextAwareWeights
from dataset.feature import FeatureDataset
from util.io import store_json, store_gz_json
from util.eval import ForegroundF1, ErrorStat
from util.dataset import DATASETS, load_classes
from util.score import compute_mAPs
EPOCH_NUM_FRAMES = 1000000
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument('dataset', type=str, choices=DATASETS)
parser.add_argument('feat_dir', type=str)
parser.add_argument(
'-m', '--model_arch', type=str, required=True,
choices=['gru', 'tcn', 'mstcn', 'gcn', 'asformer'])
parser.add_argument('--clip_len', type=int, default=500)
parser.add_argument('--batch_size', type=int, default=16)
parser.add_argument('--num_epochs', type=int, default=50)
parser.add_argument('--warm_up_epochs', type=int, default=3)
parser.add_argument('-lr', '--learning_rate', type=float, default=0.001)
parser.add_argument('-s', '--save_dir', type=str)
parser.add_argument('--feat_dims', type=int, nargs=2)
parser.add_argument('--calf', action='store_true')
parser.add_argument('--dilate_len', type=int, default=0)
parser.add_argument('--eval_clip', action='store_true')
return parser.parse_args()
def evaluate(model, dataset, classes, save_pred=None, clip_len=None):
classes_inv = {v: k for k, v in classes.items()}
err = ErrorStat()
f1 = ForegroundF1()
pred_events = []
pred_events_high_recall = []
for video in dataset.videos:
feat, label, pad_len = dataset.get(video)
assert feat.shape[0] == label.shape[0] + 2 * pad_len, (
feat.shape, label.shape, pad_len)
if clip_len:
scores = np.zeros((feat.shape[0], len(classes) + 1))
support = np.zeros(feat.shape[0], dtype=np.int32)
for i in range(0, max(1, feat.shape[0] - clip_len // 2 + 1),
clip_len // 2):
tmp = model.predict(feat[i:i + clip_len, :])[1]
if i + tmp.shape[0] > feat.shape[0]:
# Truncate padding
tmp = tmp[:feat.shape[0] - i, :]
scores[i:i + tmp.shape[0], :] += tmp
support[i:i + tmp.shape[0]] += 1
assert np.min(support) > 0, (video, support.tolist())
scores /= support[:, None]
pred = np.argmax(scores, axis=1)
else:
pred, scores = model.predict(feat)
if pad_len > 0:
pred = pred[pad_len:-pad_len]
scores = scores[pad_len:-pad_len]
assert pred.shape[0] == label.shape[0]
assert scores.shape[0] == label.shape[0]
err.update(label, pred)
events = []
events_high_recall = []
for i in range(len(pred)):
f1.update(label[i], pred[i])
if pred[i] != 0:
events.append({
'label': classes_inv[pred[i]],
'frame': i,
'score': scores[i, pred[i]].item()
})
for j in classes_inv:
if scores[i, j] >= 0.01:
events_high_recall.append({
'label': classes_inv[j],
'frame': i,
'score': scores[i, j].item()
})
pred_events.append({'video': video, 'events': events})
pred_events_high_recall.append({
'video': video, 'events': events_high_recall})
print('Error (frame-level): {:0.2f}\n'.format(err.get() * 100))
def get_f1_tab_row(str_k):
k = classes[str_k] if str_k != 'any' else None
return [str_k, f1.get(k) * 100, *f1.tp_fp_fn(k)]
rows = [get_f1_tab_row('any')]
for c in sorted(classes):
rows.append(get_f1_tab_row(c))
print(tabulate(rows, headers=['Exact frame', 'F1', 'TP', 'FP', 'FN'],
floatfmt='0.2f'))
print()
mAPs, _ = compute_mAPs(dataset._labels, pred_events_high_recall)
print()
if save_pred is not None:
store_json(save_pred + '.json', pred_events)
store_gz_json(save_pred + '.recall.json.gz', pred_events_high_recall)
return np.mean(mAPs[1:])
def get_lr_scheduler(args, optimizer, num_steps_per_epoch):
cosine_epochs = args.num_epochs - args.warm_up_epochs
print('Using Linear Warmup ({}) + Cosine Annealing LR ({})'.format(
args.warm_up_epochs, cosine_epochs))
return args.num_epochs, ChainedScheduler([
LinearLR(optimizer, start_factor=0.01, end_factor=1.0,
total_iters=args.warm_up_epochs * num_steps_per_epoch),
CosineAnnealingLR(optimizer, num_steps_per_epoch * cosine_epochs)])
def store_config(file_path, args, num_epochs, classes):
store_json(file_path, {
'dataset': args.dataset, 'num_classes': len(classes),
'clip_len': args.clip_len, 'batch_size': args.batch_size,
'num_epochs': num_epochs, 'warm_up_epochs': args.warm_up_epochs,
'learning_rate': args.learning_rate, 'eval_clip': args.eval_clip,
'epoch_num_frames': EPOCH_NUM_FRAMES, 'calf': args.calf,
'dilate_len': args.dilate_len,
}, pretty=True)
def build_datasets(args):
calf_weights = None
if args.calf:
calf_weights = ContextAwareWeights()
classes = load_classes(os.path.join('data', args.dataset, 'class.txt'))
dataset_len = EPOCH_NUM_FRAMES // args.clip_len
train_data = FeatureDataset(
classes, os.path.join('data', args.dataset, 'train.json'),
args.feat_dir, args.clip_len, dataset_len,
feat_dims=args.feat_dims, calf_weights=calf_weights,
dilate_len=args.dilate_len)
train_data.print_info()
val_data = FeatureDataset(
classes, os.path.join('data', args.dataset, 'val.json'),
args.feat_dir, args.clip_len, dataset_len // 2,
feat_dims=args.feat_dims, calf_weights=calf_weights,
dilate_len=args.dilate_len)
val_data.print_info()
return classes, train_data, val_data
def main(args):
if not os.path.isdir(args.feat_dir):
args.feat_dir = os.path.join('data', args.dataset, args.feat_dir)
classes, train_data, val_data = build_datasets(args)
print('Feature dim:', train_data.feature_dim)
worker_init_fn = lambda x: random.seed(x + epoch * 10)
train_loader = DataLoader(
train_data, shuffle=False, batch_size=args.batch_size,
worker_init_fn=worker_init_fn)
val_loader = DataLoader(
val_data, shuffle=False, batch_size=args.batch_size,
worker_init_fn=worker_init_fn)
num_classes = len(classes) + 1
if args.model_arch == 'gru':
model = GRU(train_data.feature_dim, num_classes)
elif args.model_arch == 'tcn':
model = TCN(train_data.feature_dim, num_classes)
elif args.model_arch == 'mstcn':
model = TCN(train_data.feature_dim, num_classes, num_stages=3)
elif args.model_arch == 'gcn':
model = GCN(train_data.feature_dim, num_classes)
elif args.model_arch == 'asformer':
model = ASFormer(train_data.feature_dim, num_classes)
args.eval_clip = True
print('ASFormer requires clip eval due to learned position embedding')
else:
raise NotImplementedError()
optimizer, scaler = model.get_optimizer({'lr': args.learning_rate})
num_steps_per_epoch = len(train_loader)
num_epochs, lr_scheduler = get_lr_scheduler(
args, optimizer, num_steps_per_epoch)
store_config('/dev/stdout', args, num_epochs, classes)
losses = []
best_epoch = None
best_model_dict = None
best_val_mAP = 0
for epoch in range(num_epochs):
train_loss = model.epoch(train_loader, optimizer, scaler,
lr_scheduler=lr_scheduler)
val_loss = model.epoch(val_loader)
print('[Epoch {}] Train loss: {:0.3f} Val loss: {:0.3f}'.format(
epoch, train_loss, val_loss))
losses.append({'train': train_loss, 'val': val_loss})
if args.save_dir is not None:
os.makedirs(args.save_dir, exist_ok=True)
store_json(os.path.join(args.save_dir, 'loss.json'), losses)
store_config(os.path.join(args.save_dir, 'config.json'),
args, num_epochs, classes)
print('=== Results on VAL (w/o NMS) ===')
pred_file = None
if args.save_dir is not None:
pred_file = os.path.join(args.save_dir, 'pred-val.{}'.format(epoch))
os.makedirs(args.save_dir, exist_ok=True)
val_mAP = evaluate(model, val_data, classes, pred_file,
args.clip_len if args.eval_clip else None)
if val_mAP > best_val_mAP:
best_model_dict = copy.deepcopy(model.state_dict())
best_val_mAP = val_mAP
best_epoch = epoch
if args.save_dir is not None:
torch.save(best_model_dict,
os.path.join(args.save_dir, 'best_epoch.pt'))
print('New best epoch!')
print('Best epoch: {}\n'.format(best_epoch))
del train_data, train_loader, val_data, val_loader
test_dataset_path = os.path.join('data', args.dataset, 'test.json')
if best_model_dict is not None and os.path.exists(test_dataset_path):
model.load(best_model_dict)
pred_file = None if args.save_dir is None else os.path.join(
args.save_dir, 'pred-test.{}'.format(best_epoch))
print('=== Results on TEST (w/o NMS) ===')
evaluate(model, FeatureDataset(
classes, test_dataset_path, args.feat_dir, args.clip_len,
1, feat_dims=args.feat_dims
), classes, pred_file, args.clip_len if args.eval_clip else None)
if __name__ == '__main__':
main(get_args())