-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy patheval.py
executable file
·92 lines (71 loc) · 3.07 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
#!/usr/bin/env python3
import os
import argparse
import re
from util.io import load_gz_json, load_json
from util.dataset import DATASETS, FINEGYM_START_SET
from util.score import compute_mAPs
from util.eval import non_maximum_supression
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument('pred_file', help='Path to predictions or model dirs')
parser.add_argument('-d', '--dataset', type=str, choices=DATASETS)
parser.add_argument('-s', '--split', type=str, required=True,
choices=['train', 'test', 'val'])
parser.add_argument('--nms_window', type=int, default=1)
parser.add_argument('-t', '--tolerances', type=int, nargs='+')
# Start only set for finegym
parser.add_argument('--start', action='store_true',
help='Restrict to start actions only for FineGym')
return parser.parse_args()
def get_pred_file(pred_dir, split):
regex = re.compile(r'pred-{}\.(\d+)\.recall\.json\.gz'.format(split))
candidates = []
for file_name in os.listdir(pred_dir):
m = regex.match(file_name)
if m:
candidates.append((
os.path.join(pred_dir, file_name), int(m.group(1))))
if len(candidates) > 0:
candidates.sort(key=lambda x: x[1], reverse=True)
return candidates[0]
raise FileNotFoundError('No suitable prediction file!')
def main(dataset, pred_file, split, nms_window, tolerances, start):
# Infer the name of the prediction file
if os.path.isdir(pred_file):
if dataset is None:
config = load_json(os.path.join(pred_file, 'config.json'))
dataset = config['dataset']
print('Inferred dataset:', dataset)
if split != 'test':
_, epoch = get_pred_file(pred_file, 'test')
pred_file = os.path.join(
pred_file, 'pred-{}.{}.recall.json.gz'.format(split, epoch))
else:
pred_file, _ = get_pred_file(pred_file, split)
print('Evaluating on: {}'.format(pred_file))
else:
assert dataset is not None, 'Dataset is required!'
pred = (load_gz_json if pred_file.endswith('.gz') else load_json)(
pred_file)
truth = load_json(os.path.join('data', dataset, '{}.json'.format(split)))
if start:
assert dataset == 'finegym'
for p in pred:
p['events'] = [e for e in p['events'] if e['label']
in FINEGYM_START_SET]
for t in truth:
t['events'] = [e for e in t['events'] if e['label']
in FINEGYM_START_SET]
t['num_events'] = len(t['events'])
kwargs = {}
if tolerances is not None:
kwargs['tolerances'] = tolerances
print('\n=== Results on {} (w/o NMS) ==='.format(split))
no_nms_result = compute_mAPs(truth, pred, **kwargs)
pred = non_maximum_supression(pred, nms_window)
print('\n=== Results on {} (w/ NMS) ==='.format(split))
nms_result = compute_mAPs(truth, pred, **kwargs)
return no_nms_result, nms_result
if __name__ == '__main__':
main(**vars(get_args()))