-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
217 lines (182 loc) · 7.83 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
"""
This is the training script
"""
import sys
import os
import yaml
from datetime import datetime
import pytz
import jax
import jax.numpy as jnp
from data.dataloader import input_fn_builder
from training.train_model import *
from flax import jax_utils
from training.optimization import construct_train_state
from models.checkpoint import initialize_using_checkpoint, save_checkpoint, load_checkpoint, bf16_to_f32
from jax.experimental import multihost_utils
import argparse
import numpy as np
import functools
import time
import decimal
import simplejson
from config import plot_spectrogram, eps
# jax.config.update('jax_log_compiles', True)
is_on_gpu = any([x.platform == 'gpu' for x in jax.local_devices()])
if not is_on_gpu:
assert any([x.platform == 'tpu' for x in jax.local_devices()])
print('JAX process: {} / {}. Local devices {}. Using {}'.format(
jax.process_index(), jax.process_count(), jax.local_devices(), 'GPU' if is_on_gpu else 'TPU'), flush=True)
parser = argparse.ArgumentParser(description='Train model!')
parser.add_argument(
'config_file',
help='Where the config.yaml is located',
type=str,
)
parser.add_argument(
'-output_dir',
help='Override output directory (otherwise we do whats in the config file and add timestamp).',
dest='output_dir',
default='',
type=str,
)
parser.add_argument(
'-disable_wandb',
help='dont log this result on weights and biases',
dest='disable_wandb',
action='store_true',
)
args = parser.parse_args()
print(f"Loading from {args.config_file}", flush=True)
with open(args.config_file, 'r') as f:
config = yaml.load(f, yaml.FullLoader)
seattle_time = pytz.utc.localize(datetime.utcnow()).astimezone(pytz.timezone('America/Los_Angeles'))
seattle_time = seattle_time.strftime("%Y-%m-%d-%H:%M.%S")
if is_on_gpu:
config['data']['num_train_files'] = 1
config['device']['output_dir'] = 'temp'
config['model']['use_bfloat16'] = False
config['device']['batch_size'] = 6
config['optimizer']['num_train_steps_override'] = 1000
elif args.output_dir == '':
config['device']['output_dir'] = os.path.join(config['device']['output_dir'], seattle_time)
else:
config['device']['output_dir'] = args.output_dir
config['_path'] = args.config_file
if (jax.process_index() == 0) and (not is_on_gpu) and (not args.disable_wandb):
import wandb
wandb_api, wandb_project, wandb_entity, wandb_name = (
config['device']['wandb_api'],
config['device']['wandb_project'],
config['device']['wandb_entity'],
config['device']['wandb_name'],
)
del config['device']['wandb_api']
del config['device']['wandb_project']
del config['device']['wandb_entity']
del config['device']['wandb_name']
os.environ["WANDB_API_KEY"] = wandb_api
wandb.init(
project=wandb_project,
entity=wandb_entity,
name=wandb_name,
config=config,
)
else:
wandb = None
seed = config['device'].get('seed', None)
if seed is None:
seed = multihost_utils.broadcast_one_to_all(np.int32(time.time()))
ds_train_iter = input_fn_builder(config, seed, is_training=True)
dummy_batch = next(ds_train_iter)
for k, v in dummy_batch.items():
print("{}: {} {}".format(k, v.shape, v.dtype), flush=True)
aux_rng_keys=["dropout", "drop_path"]
generator = Generator.from_config(config, 'generator')
discriminator = Discriminator.from_config(config, 'discriminator')
lpips = LPIPS.from_config(config, 'vgg')
if is_on_gpu:
print("DEBUG GPU BATCH!", flush=True)
rng = jax.random.PRNGKey(0)
num_keys = len(aux_rng_keys)
key, *subkeys = jax.random.split(rng, num_keys + 1)
rng_keys = {aux_rng_keys[ix]: subkeys[ix] for ix in range(len(aux_rng_keys))}
generator.init({'params': key, **rng_keys}, {k: jnp.asarray(v[0]) for k, v in dummy_batch.items()})
g_params, g_rng_keys = generator.init_from_dummy_batch(dummy_batch, seed, aux_rng_keys)
d_params, d_rng_keys = discriminator.init_from_dummy_batch(dummy_batch, seed, aux_rng_keys)
p_params, p_rng_keys = lpips.init_from_dummy_batch(dummy_batch, seed, aux_rng_keys)
state = construct_train_state(
opt_config={'g': config['optimizer_g'], 'd': config['optimizer_d']},
models={'g': generator, 'd': discriminator, 'p': lpips},
params={'g': g_params, 'd': d_params, 'p': p_params},
rng_keys={'g': g_rng_keys, 'd': d_rng_keys, 'p': p_rng_keys})
step = None
# Initialize params using merlot reserve checkpoint
ckpt_path = config['device'].get('initialize_ckpt', '')
if ckpt_path:
ckpt = load_checkpoint(path=ckpt_path)
cache_params_g = ckpt['params_g']
cache_params_d = ckpt['params_d']
cache_params_p = ckpt['params_p']
cache_opt_state_g = ckpt['opt_state_g']
cache_opt_state_d = ckpt['opt_state_d']
step = ckpt['step']
del ckpt
print(f"{ckpt_path}: {list(cache_params_g.keys())} loaded on the model", flush=True)
print(f"{ckpt_path}: {list(cache_params_d.keys())} loaded on the model", flush=True)
print(f"{ckpt_path}: {list(cache_params_p.keys())} loaded on the model", flush=True)
state = state.replace(
params_p=initialize_using_checkpoint(state.params_p, cache_params_p),
params_g=initialize_using_checkpoint(state.params_g, cache_params_g),
params_d=initialize_using_checkpoint(state.params_d, cache_params_d),
step = step,
)
# load if we can
state = load_checkpoint(state=state, path=config['device']['initialize_ckpt'], step=None,
use_bfloat16_weights=config['optimizer_g'].get('use_bfloat16_weights', False))
start_step = int(state.step)
state = jax_utils.replicate(state)
p_train_step = jax.pmap(functools.partial(train_step, config=config,),
axis_name='batch', donate_argnums=(0, 1,))
# p_train_step = jax.vmap(functools.partial(train_step, config=config,),
# axis_name='batch')#, donate_argnums=(0, 1,))
train_metrics = []
time_elapsed = []
num_train_steps = config['optimizer_g'].get('num_train_steps_override', config['optimizer_g']['num_train_steps'])
log_every = config['device'].get('commit_every_nsteps', 50)
for n in range(start_step, num_train_steps):
st = time.time()
batch = next(ds_train_iter)
state, loss_info = p_train_step(state, batch)
# Async transfer. Basically we queue the last thing, then log the thing from `log_every` iterations ago
if jax.process_index() == 0:
image_info = {k:v[0] for k, v in loss_info.items() if 'image' in k}
jax.tree_map(lambda x: x.copy_to_host_async(), image_info)
loss_info = {k:v for k, v in loss_info.items() if 'image' not in k}
train_metrics.append(jax.tree_map(lambda x: x[0], loss_info))
jax.tree_map(lambda x: x.copy_to_host_async(), train_metrics[-1])
step_for_logging = n - log_every
if step_for_logging >= 0:
train_metrics[step_for_logging] = {k: float(v) for k, v in train_metrics[step_for_logging].items()}
tmp_metrics = {k:v for k, v in train_metrics[step_for_logging].items()}
if (n + 1) % log_every == 0:
if wandb is not None:
for k, v in image_info.items(): tmp_metrics['image' + '/' + k] = wandb.Image(np.array(v[0]), caption=k)
stats = {
k: decimal.Decimal("{:.6f}".format(v)) if isinstance(v, float) else v
for k, v in train_metrics[step_for_logging].items()
}
json_stats = simplejson.dumps(stats, sort_keys=True, use_decimal=True)
print("@iter {} stats: {:s}".format(step_for_logging + start_step, json_stats), flush=True)
if wandb is not None:
wandb.log(tmp_metrics, step=step_for_logging + start_step, commit=(n + 1) % log_every == 0)
if (n + 1) % config['device']['save_every_nsteps'] == 0 or (n + 1) == num_train_steps:
save_checkpoint(state, path=config['device']['output_dir'])
print(f"Saving @iter {n:03d}.", flush=True)
time_elapsed.append(time.time() - st)
if len(time_elapsed) >= 100:
tsum = sum(time_elapsed)
print("Completed 100 batches in {:.3f}sec, avg {:.3f} it/sec".format(tsum, 100.0/tsum), flush=True)
time_elapsed = []
if wandb is not None:
wandb.finish()