-
Notifications
You must be signed in to change notification settings - Fork 0
/
main.py
226 lines (206 loc) · 7.63 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
######################################
# Kaihua Tang
######################################
import os
import json
import yaml
import argparse
import torch
import torch.nn as nn
import random
import numpy as np
import utils.general_utils as utils
from utils.logger_utils import custom_logger
from data.dataloader import get_loader
from utils.checkpoint_utils import Checkpoint
from utils.training_utils import *
os.environ["TMPDIR"] = get_tmp_path()
from utils.train_loader import train_loader
from utils.test_loader import test_loader
if __name__ == "__main__":
# ============================================================================
# argument parser
parser = argparse.ArgumentParser()
parser.add_argument(
"--cfg",
default=None,
type=str,
help="Indicate the config file used for the training.",
)
parser.add_argument(
"--seed",
default=25,
type=int,
help="Fix the random seed for reproduction. Default is 25.",
)
parser.add_argument(
"--phase", default="train", type=str, help="Indicate train/val/test phase."
)
parser.add_argument(
"--load_dir",
default=None,
type=str,
help="Load model from this directory for testing",
)
parser.add_argument(
"--output_dir",
default=None,
type=str,
help="Output directory that saves everything.",
)
parser.add_argument(
"--require_eval",
action="store_true",
help="Require evaluation on val set during training.",
)
parser.add_argument(
"--logger_name",
default="logger_eval",
type=str,
help="Name of TXT output for the logger.",
)
# update config settings
parser.add_argument("--lr", default=None, type=float, help="Learning Rate")
parser.add_argument(
"--testset", default=None, type=str, help="Reset the type of test set."
)
parser.add_argument(
"--loss_type", default=None, type=str, help="Reset the type of loss function."
)
parser.add_argument(
"--model_type", default=None, type=str, help="Reset the type of model."
)
parser.add_argument(
"--train_type",
default=None,
type=str,
help="Reset the type of traning strategy.",
)
parser.add_argument(
"--sample_type",
default=None,
type=str,
help="Reset the type of sampling strategy.",
)
parser.add_argument(
"--rand_aug",
action="store_true",
help="Apply Random-Augmentation during training.",
)
parser.add_argument(
"--save_all",
action="store_true",
help="Save all output information during testing.",
)
parser.add_argument(
"--denosing",
action="store_true",
help="Adding this option will remove noise samples through unsupervised learning.",
)
args = parser.parse_args()
# ============================================================================
# init logger
if args.output_dir is None:
print("Please specify output directory")
if not os.path.exists(args.output_dir):
os.makedirs(args.output_dir)
if args.phase != "train":
logger = custom_logger(args.output_dir, name="{}.txt".format(args.logger_name))
else:
logger = custom_logger(args.output_dir)
logger.info("========================= Start Main =========================")
# ============================================================================
# fix random seed
logger.info("=====> Using fixed random seed: " + str(args.seed))
utils.seed_torch(args.seed)
# ============================================================================
# load config
logger.info("=====> Load config from yaml: " + str(args.cfg))
with open(args.cfg) as f:
config = yaml.load(f, Loader=yaml.FullLoader)
# load detailed settings for each algorithms
logger.info(
"=====> Load algorithm details from yaml: config/algorithms_config.yaml"
)
with open("config/algorithms_config.yaml") as f:
algo_config = yaml.load(f, Loader=yaml.FullLoader)
# update config
logger.info("=====> Merge arguments from command")
config = utils.update(config, algo_config, args)
# save config
logger.info("=====> Save config as config.json")
with open(os.path.join(args.output_dir, "config.json"), "w") as f:
json.dump(config, f)
utils.print_config(config, logger)
# ============================================================================
# training
if args.phase == "train":
logger.info(
"========= The Current Training Strategy is {} =========".format(
config["training_opt"]["type"]
)
)
train_func = train_loader(config)
training = train_func(args, config, logger, eval=args.require_eval)
training.run()
else:
# ============================================================================
# create model
logger.info(
"=====> Model construction from: " + str(config["networks"]["type"])
)
model_type = config["networks"]["type"]
model_file = config["networks"][model_type]["def_file"]
model_args = config["networks"][model_type]["params"]
logger.info(
"=====> Classifier construction from: " + str(config["classifiers"]["type"])
)
classifier_type = config["classifiers"]["type"]
classifier_file = config["classifiers"][classifier_type]["def_file"]
classifier_args = config["classifiers"][classifier_type]["params"]
model = utils.source_import(model_file).create_model(**model_args)
classifier = utils.source_import(classifier_file).create_model(
**classifier_args
)
model = nn.DataParallel(model).cuda()
classifier = nn.DataParallel(classifier).cuda()
# ============================================================================
# load checkpoint
checkpoint = Checkpoint(config)
ckpt = checkpoint.load(model, classifier, args.load_dir, logger)
# ============================================================================
# testing
test_func = test_loader(config)
if args.phase == "val":
# run validation set
testing = test_func(
config, logger, model, classifier, val=True, add_ckpt=ckpt
)
testing.run_val(epoch=-1)
else:
assert args.phase == "test"
# Run a specific test split
if args.testset:
testing = test_func(
config, logger, model, classifier, val=False, add_ckpt=ckpt
)
testing.run_test()
# Run all test splits
else:
if "LT" in config["dataset"]["name"]:
config["dataset"]["testset"] = "test_lt"
testing = test_func(
config, logger, model, classifier, val=False, add_ckpt=ckpt
)
testing.run_test()
config["dataset"]["testset"] = "test_bl"
testing = test_func(
config, logger, model, classifier, val=False, add_ckpt=ckpt
)
testing.run_test()
config["dataset"]["testset"] = "test_bbl"
testing = test_func(
config, logger, model, classifier, val=False, add_ckpt=ckpt
)
testing.run_test()
logger.info("========================= Complete =========================")