forked from IGNF/myria3d
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun.py
executable file
·134 lines (105 loc) · 4.53 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
try:
# It is safer to import comet before all other imports.
import comet_ml # noqa
except ImportError:
print(
"Warning: package comet_ml not found. This may break things if you use a comet callback."
)
from enum import Enum
import os
import sys
from glob import glob
import dotenv
import hydra
from omegaconf import DictConfig
from tqdm import tqdm
from myria3d.utils import utils
from myria3d.pctl.dataset.hdf5 import create_hdf5
from myria3d.pctl.dataset.utils import get_las_paths_by_split_dict
TASK_NAME_DETECTION_STRING = "task.task_name="
DEFAULT_DIRECTORY = "trained_model_assets/"
DEFAULT_CONFIG_FILE = "proto151_V2.0_epoch_100_Myria3DV3.1.0_predict_config_V3.7.0.yaml"
DEFAULT_CHECKPOINT = "proto151_V2.0_epoch_100_Myria3DV3.1.0.ckpt"
DEFAULT_ENV = "placeholder.env"
class TASK_NAMES(Enum):
FIT = "fit"
TEST = "test"
FINETUNE = "finetune"
PREDICT = "predict"
HDF5 = "create_hdf5"
DEFAULT_TASK = TASK_NAMES.FIT.value
log = utils.get_logger(__name__)
@hydra.main(config_path="configs/", config_name="config.yaml")
def launch_train(
config: DictConfig,
): # pragma: no cover (it's just an initialyzer of a class/method tested elsewhere)
"""Training, evaluation, testing, or finetuning of a neural network."""
# Imports should be nested inside @hydra.main to optimize tab completion
# Read more here: https://github.com/facebookresearch/hydra/issues/934
from myria3d.train import train
utils.extras(config)
# Pretty print config using Rich library
if config.get("print_config"):
utils.print_config(config, resolve=False)
return train(config)
@hydra.main(config_path=DEFAULT_DIRECTORY, config_name=DEFAULT_CONFIG_FILE)
def launch_predict(config: DictConfig):
"""Infer probabilities and automate semantic segmentation decisions on unseen data."""
# Imports should be nested inside @hydra.main to optimize tab completion
# Read more here: https://github.com/facebookresearch/hydra/issues/934
from myria3d.predict import predict
# hydra changes current directory, so we make sure the checkpoint has an absolute path
if not os.path.isabs(config.predict.ckpt_path):
config.predict.ckpt_path = os.path.join(
os.path.dirname(__file__), config.predict.ckpt_path
)
# Pretty print config using Rich library
if config.get("print_config"):
utils.print_config(config, resolve=False)
# Iterate over the files and predict.
src_las_iterable = glob(config.predict.src_las)
for config.predict.src_las in tqdm(src_las_iterable):
predict(config)
@hydra.main(config_path="configs/", config_name="config.yaml")
def launch_hdf5(config: DictConfig):
"""Build an HDF5 file from a directory with las files."""
# Pretty print config using Rich library
if config.get("print_config"):
utils.print_config(config, resolve=False)
las_paths_by_split_dict = get_las_paths_by_split_dict(
config.datamodule.get("data_dir"), config.datamodule.get("split_csv_path")
)
create_hdf5(
las_paths_by_split_dict=las_paths_by_split_dict,
hdf5_file_path=config.datamodule.get("hdf5_file_path"),
epsg=config.datamodule.get("epsg"),
tile_width=config.datamodule.get("tile_width"),
subtile_width=config.datamodule.get("subtile_width"),
pre_filter=hydra.utils.instantiate(config.datamodule.get("pre_filter")),
subtile_overlap_train=config.datamodule.get("subtile_overlap_train"),
points_pre_transform=hydra.utils.instantiate(
config.datamodule.get("points_pre_transform")
),
)
if __name__ == "__main__":
task_name = "fit"
for arg in sys.argv:
if TASK_NAME_DETECTION_STRING in arg:
_, task_name = arg.split("=")
break
log.info(f"Task: {task_name}")
if task_name in [TASK_NAMES.FIT.value, TASK_NAMES.TEST.value, TASK_NAMES.FINETUNE.value]:
# load environment variables from `.env` file if it exists
# recursively searches for `.env` in all folders starting from work dir
dotenv.load_dotenv(override=True)
launch_train()
elif task_name == TASK_NAMES.PREDICT.value:
dotenv.load_dotenv(os.path.join(DEFAULT_DIRECTORY, DEFAULT_ENV))
launch_predict()
elif task_name == TASK_NAMES.HDF5.value:
launch_hdf5()
else:
choices = ", ".join(task.value for task in TASK_NAMES)
raise ValueError(
f"Task '{task_name}' is not known. Specify a valid task name via task.task_name. Valid choices are: {choices})"
)