-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathplot_realizations.py
151 lines (103 loc) · 5.17 KB
/
plot_realizations.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Thu Mar 10 08:54:50 CET 2022
@author: jam
"""
#%% global packages
import sys
import pandas as pd
import numpy as np
import matplotlib as mpl
import matplotlib.colors as colors
import matplotlib.figure as figure
mpl.rc('text', usetex=True)
mpl.rc('font', family='serif')
mpl.rc('font', size=10)
from IPython.core.display import display
#%%
# moving average - can be used for smoothing the plots
def mav(x, w=100):
return np.convolve(x, np.ones(w), 'valid') / w
#%% data import
# file with data from the experiment
# Note: header=6 is for NetLogo data
exp_detr = 'deterministic_realizations'
exp_rand = 'random_realizations'
df_detr = pd.read_csv(exp_detr + '.csv', header=6)
df_rand = pd.read_csv(exp_rand + '.csv', header=6)
#%% column names
v = [
"[run number]",
"synchronous",
"init-life",
"second-treshold",
"rule-switch-prob",
"world-size",
"[step]",
"%living"
]
#%%
# selected example params
init_life = 50
second_thresholds = 6,8
put_legend=True
# set man_n>1 to use the moving average
mav_n = 1
# mm is used to limit the numer of time steps
mm = 50
for second_threshold in second_thresholds:
exp_desc = f'realization_il{init_life}_st{second_threshold}'
#%%
#rule_switch_prob = 0.1
rule_switch_probs = [_/10 for _ in [0,1,2,4,7,10]]
fig = mpl.figure.Figure(figsize=(6,3.5))
for i,rule_switch_prob in enumerate(rule_switch_probs):
axs = fig.add_subplot(231+i);
ed1_detr_sync = df_detr.query(f"synchronous == True & `init-life` == {init_life} & `second-threshold` == {second_threshold} & `rule-switch-prob` == 0.0")[
['[run number]', '[step]', '%living']]
ed1_detr_async = df_detr.query(f"synchronous == False & `init-life` == {init_life} & `second-threshold` == {second_threshold} & `rule-switch-prob` == 0.0")[
['[run number]', '[step]', '%living']]
ed1_rand_sync = df_rand.query(f"synchronous == True & `init-life` == {init_life} & `second-threshold` == {second_threshold} & `rule-switch-prob` == {rule_switch_prob}")[
['[run number]', '[step]', '%living']]
ed1_rand_async = df_rand.query(f"synchronous == False & `init-life` == {init_life} & `second-threshold` == {second_threshold} & `rule-switch-prob` == {rule_switch_prob}")[
['[run number]', '[step]', '%living']]
# number of runs where the particular cases were calculated
ed1_detr_sync_r = ed1_detr_sync['[run number]'].unique()
ed1_detr_async_r = ed1_detr_async['[run number]'].unique()
ed1_rand_sync_r = ed1_rand_sync['[run number]'].unique()
ed1_rand_async_r = ed1_rand_async['[run number]'].unique()
for r in [0]: #iterate over realizations (just one case to show)
ed1_detr_sync_p = ed1_detr_sync.query("`[run number]` == {}".format(ed1_detr_sync_r[r]))[['[step]', '%living']].to_numpy()
ed1_detr_async_p = ed1_detr_async.query("`[run number]` == {}".format(ed1_detr_async_r[r]))[['[step]', '%living']].to_numpy()
ed1_rand_sync_p = ed1_rand_sync.query("`[run number]` == {}".format(ed1_rand_sync_r[r]))[['[step]', '%living']].to_numpy()
ed1_rand_async_p = ed1_rand_async.query("`[run number]` == {}".format(ed1_rand_async_r[r]))[['[step]', '%living']].to_numpy()
axs.plot(range(len( mav(ed1_detr_sync_p.T[1][1:mm+1],mav_n))), mav(ed1_detr_sync_p.T[1][1:mm+1],mav_n),'g:', label="detrm sync")
axs.plot(range(len( mav(ed1_detr_async_p.T[1][1:mm+1],mav_n))), mav(ed1_detr_async_p.T[1][1:mm+1],mav_n), 'k-', lw=0.25, label="detrm async")
axs.plot(range(len( mav(ed1_rand_sync_p.T[1][1:mm+1],mav_n))), mav(ed1_rand_sync_p.T[1][1:mm+1],mav_n),'b-.',lw=1, label="rand sync")
axs.plot(range(len( mav(ed1_rand_async_p.T[1][1:mm+1],mav_n))), mav(ed1_rand_async_p.T[1][1:mm+1],mav_n), 'r--', lw=1.5, label="rand async")
axs.grid(True,linestyle=':', linewidth=0.5, c='k')
axs.set_ylim(0,100)
axs.set_xlim(0,mm)
axs.set_xticks(range(0,51,10))
# plt.plot(ed1_p.T[0][0::], ed1_p.T[1][0::])
if i not in [0,3,6]:
axs.set_yticklabels([])
if i in [0,3,6]:
axs.set_ylabel('\% living')
if i in [0,1,2]:
axs.set_xticklabels([])
if i in [3,4,5]:
axs.set_xlabel("step")
axs.set_title(r"$p={}$".format(rule_switch_prob))
handles, labels = axs.get_legend_handles_labels()
# lax = fig.add_axes([0.125, 1.05, 0.8, 0.025])
# axs.legend(bbox_to_anchor=(0, 2), ncol=4)
if put_legend:
fig.legend(handles, labels, bbox_to_anchor=(0.95, 1.1), ncol=4)
put_legend=False
fig.tight_layout()
display(fig)
fName = "plots/plot_"+ exp_desc +".pdf"
fig.savefig(fName, format="pdf", bbox_inches = 'tight')
print("[INFO] Saving " + fName)