-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmarching_cubes.py
549 lines (479 loc) · 20 KB
/
marching_cubes.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
# Author: Joelene Hales, 2024
import numpy as np
import glm
import os
import sys
# Scalar fields
def wavy(x, y, z):
""" Scalar field of a wavy surface, defined by the function
f(x, y, z) = y - sin(x)cos(z)
"""
return y - np.sin(x) * np.cos(z)
def hyperboloid(x, y, z):
""" Scalar field of a hyperboloid, defined by the function
f(x, y, z) = x^2 - y^2 - z^2 - z
"""
return x**2 - y**2 - z**2 - z
# Helper functions used in the marching cubes algorithm
def _lookup_configuration(case):
""" Lookup which of the cube's edge midpoints define the vertices of the
triangle(s) in a case of marching cubes.
Parameters
----------
case : int
Case of marching cubes encoded as an 8-bit number
Returns
-------
configuration : list[int]
Edge indices corresponding to the given case of marching cubes
"""
# Define lookup table. Each index of the table corresponds to one case of
# marching cubes. Each list element corresponds to one edge of the cube.
lookup_table = [
[],
[0, 8, 3], # Index 1: back bottom left corner of cube
[0, 1, 9], # Index 2: back bottom right corner of cube
[1, 8, 3, 9, 8, 1],
[1, 2, 10], # Index 4: front bottom right corner of cube
[0, 8, 3, 1, 2, 10],
[9, 2, 10, 0, 2, 9],
[2, 8, 3, 2, 10, 8, 10, 9, 8],
[3, 11, 2], # Index 8: front bottom left corner of cube
[0, 11, 2, 8, 11, 0],
[1, 9, 0, 2, 3, 11],
[1, 11, 2, 1, 9, 11, 9, 8, 11],
[3, 10, 1, 11, 10, 3],
[0, 10, 1, 0, 8, 10, 8, 11, 10],
[3, 9, 0, 3, 11, 9, 11, 10, 9],
[9, 8, 10, 10, 8, 11],
[4, 7, 8], # Index 16: bottom top left corner of cube
[4, 3, 0, 7, 3, 4],
[0, 1, 9, 8, 4, 7],
[4, 1, 9, 4, 7, 1, 7, 3, 1],
[1, 2, 10, 8, 4, 7],
[3, 4, 7, 3, 0, 4, 1, 2, 10],
[9, 2, 10, 9, 0, 2, 8, 4, 7],
[2, 10, 9, 2, 9, 7, 2, 7, 3, 7, 9, 4],
[8, 4, 7, 3, 11, 2],
[11, 4, 7, 11, 2, 4, 2, 0, 4],
[9, 0, 1, 8, 4, 7, 2, 3, 11],
[4, 7, 11, 9, 4, 11, 9, 11, 2, 9, 2, 1],
[3, 10, 1, 3, 11, 10, 7, 8, 4],
[1, 11, 10, 1, 4, 11, 1, 0, 4, 7, 11, 4],
[4, 7, 8, 9, 0, 11, 9, 11, 10, 11, 0, 3],
[4, 7, 11, 4, 11, 9, 9, 11, 10],
[9, 5, 4], # Index 32: bottom top right corner of cube
[9, 5, 4, 0, 8, 3],
[0, 5, 4, 1, 5, 0],
[8, 5, 4, 8, 3, 5, 3, 1, 5],
[1, 2, 10, 9, 5, 4],
[3, 0, 8, 1, 2, 10, 4, 9, 5],
[5, 2, 10, 5, 4, 2, 4, 0, 2],
[2, 10, 5, 3, 2, 5, 3, 5, 4, 3, 4, 8],
[9, 5, 4, 2, 3, 11],
[0, 11, 2, 0, 8, 11, 4, 9, 5],
[0, 5, 4, 0, 1, 5, 2, 3, 11],
[2, 1, 5, 2, 5, 8, 2, 8, 11, 4, 8, 5],
[10, 3, 11, 10, 1, 3, 9, 5, 4],
[4, 9, 5, 0, 8, 1, 8, 10, 1, 8, 11, 10],
[5, 4, 0, 5, 0, 11, 5, 11, 10, 11, 0, 3],
[5, 4, 8, 5, 8, 10, 10, 8, 11],
[9, 7, 8, 5, 7, 9],
[9, 3, 0, 9, 5, 3, 5, 7, 3],
[0, 7, 8, 0, 1, 7, 1, 5, 7],
[1, 5, 3, 3, 5, 7],
[9, 7, 8, 9, 5, 7, 10, 1, 2],
[10, 1, 2, 9, 5, 0, 5, 3, 0, 5, 7, 3],
[8, 0, 2, 8, 2, 5, 8, 5, 7, 10, 5, 2],
[2, 10, 5, 2, 5, 3, 3, 5, 7],
[7, 9, 5, 7, 8, 9, 3, 11, 2],
[9, 5, 7, 9, 7, 2, 9, 2, 0, 2, 7, 11],
[2, 3, 11, 0, 1, 8, 1, 7, 8, 1, 5, 7],
[11, 2, 1, 11, 1, 7, 7, 1, 5],
[9, 5, 8, 8, 5, 7, 10, 1, 3, 10, 3, 11],
[5, 7, 0, 5, 0, 9, 7, 11, 0, 1, 0, 10, 11, 10, 0],
[11, 10, 0, 11, 0, 3, 10, 5, 0, 8, 0, 7, 5, 7, 0],
[11, 10, 5, 7, 11, 5],
[10, 6, 5], # Index 64: front top right corner of cube
[0, 8, 3, 5, 10, 6],
[9, 0, 1, 5, 10, 6],
[1, 8, 3, 1, 9, 8, 5, 10, 6],
[1, 6, 5, 2, 6, 1],
[1, 6, 5, 1, 2, 6, 3, 0, 8],
[9, 6, 5, 9, 0, 6, 0, 2, 6],
[5, 9, 8, 5, 8, 2, 5, 2, 6, 3, 2, 8],
[2, 3, 11, 10, 6, 5],
[11, 0, 8, 11, 2, 0, 10, 6, 5],
[0, 1, 9, 2, 3, 11, 5, 10, 6],
[5, 10, 6, 1, 9, 2, 9, 11, 2, 9, 8, 11],
[6, 3, 11, 6, 5, 3, 5, 1, 3],
[0, 8, 11, 0, 11, 5, 0, 5, 1, 5, 11, 6],
[3, 11, 6, 0, 3, 6, 0, 6, 5, 0, 5, 9],
[6, 5, 9, 6, 9, 11, 11, 9, 8],
[5, 10, 6, 4, 7, 8],
[4, 3, 0, 4, 7, 3, 6, 5, 10],
[1, 9, 0, 5, 10, 6, 8, 4, 7],
[10, 6, 5, 1, 9, 7, 1, 7, 3, 7, 9, 4],
[6, 1, 2, 6, 5, 1, 4, 7, 8],
[1, 2, 5, 5, 2, 6, 3, 0, 4, 3, 4, 7],
[8, 4, 7, 9, 0, 5, 0, 6, 5, 0, 2, 6],
[7, 3, 9, 7, 9, 4, 3, 2, 9, 5, 9, 6, 2, 6, 9],
[3, 11, 2, 7, 8, 4, 10, 6, 5],
[5, 10, 6, 4, 7, 2, 4, 2, 0, 2, 7, 11],
[0, 1, 9, 4, 7, 8, 2, 3, 11, 5, 10, 6],
[9, 2, 1, 9, 11, 2, 9, 4, 11, 7, 11, 4, 5, 10, 6],
[8, 4, 7, 3, 11, 5, 3, 5, 1, 5, 11, 6],
[5, 1, 11, 5, 11, 6, 1, 0, 11, 7, 11, 4, 0, 4, 11],
[0, 5, 9, 0, 6, 5, 0, 3, 6, 11, 6, 3, 8, 4, 7],
[6, 5, 9, 6, 9, 11, 4, 7, 9, 7, 11, 9],
[10, 4, 9, 6, 4, 10],
[4, 10, 6, 4, 9, 10, 0, 8, 3],
[10, 0, 1, 10, 6, 0, 6, 4, 0],
[8, 3, 1, 8, 1, 6, 8, 6, 4, 6, 1, 10],
[1, 4, 9, 1, 2, 4, 2, 6, 4],
[3, 0, 8, 1, 2, 9, 2, 4, 9, 2, 6, 4],
[0, 2, 4, 4, 2, 6],
[8, 3, 2, 8, 2, 4, 4, 2, 6],
[10, 4, 9, 10, 6, 4, 11, 2, 3],
[0, 8, 2, 2, 8, 11, 4, 9, 10, 4, 10, 6],
[3, 11, 2, 0, 1, 6, 0, 6, 4, 6, 1, 10],
[6, 4, 1, 6, 1, 10, 4, 8, 1, 2, 1, 11, 8, 11, 1],
[9, 6, 4, 9, 3, 6, 9, 1, 3, 11, 6, 3],
[8, 11, 1, 8, 1, 0, 11, 6, 1, 9, 1, 4, 6, 4, 1],
[3, 11, 6, 3, 6, 0, 0, 6, 4],
[6, 4, 8, 11, 6, 8],
[7, 10, 6, 7, 8, 10, 8, 9, 10],
[0, 7, 3, 0, 10, 7, 0, 9, 10, 6, 7, 10],
[10, 6, 7, 1, 10, 7, 1, 7, 8, 1, 8, 0],
[10, 6, 7, 10, 7, 1, 1, 7, 3],
[1, 2, 6, 1, 6, 8, 1, 8, 9, 8, 6, 7],
[2, 6, 9, 2, 9, 1, 6, 7, 9, 0, 9, 3, 7, 3, 9],
[7, 8, 0, 7, 0, 6, 6, 0, 2],
[7, 3, 2, 6, 7, 2],
[2, 3, 11, 10, 6, 8, 10, 8, 9, 8, 6, 7],
[2, 0, 7, 2, 7, 11, 0, 9, 7, 6, 7, 10, 9, 10, 7],
[1, 8, 0, 1, 7, 8, 1, 10, 7, 6, 7, 10, 2, 3, 11],
[11, 2, 1, 11, 1, 7, 10, 6, 1, 6, 7, 1],
[8, 9, 6, 8, 6, 7, 9, 1, 6, 11, 6, 3, 1, 3, 6],
[0, 9, 1, 11, 6, 7],
[7, 8, 0, 7, 0, 6, 3, 11, 0, 11, 6, 0],
[7, 11, 6],
[7, 6, 11], # Index 128: front top left corner of cube
[3, 0, 8, 11, 7, 6],
[0, 1, 9, 11, 7, 6],
[8, 1, 9, 8, 3, 1, 11, 7, 6],
[10, 1, 2, 6, 11, 7],
[1, 2, 10, 3, 0, 8, 6, 11, 7],
[2, 9, 0, 2, 10, 9, 6, 11, 7],
[6, 11, 7, 2, 10, 3, 10, 8, 3, 10, 9, 8],
[7, 2, 3, 6, 2, 7],
[7, 0, 8, 7, 6, 0, 6, 2, 0],
[2, 7, 6, 2, 3, 7, 0, 1, 9],
[1, 6, 2, 1, 8, 6, 1, 9, 8, 8, 7, 6],
[10, 7, 6, 10, 1, 7, 1, 3, 7],
[10, 7, 6, 1, 7, 10, 1, 8, 7, 1, 0, 8],
[0, 3, 7, 0, 7, 10, 0, 10, 9, 6, 10, 7],
[7, 6, 10, 7, 10, 8, 8, 10, 9],
[6, 8, 4, 11, 8, 6],
[3, 6, 11, 3, 0, 6, 0, 4, 6],
[8, 6, 11, 8, 4, 6, 9, 0, 1],
[9, 4, 6, 9, 6, 3, 9, 3, 1, 11, 3, 6],
[6, 8, 4, 6, 11, 8, 2, 10, 1],
[1, 2, 10, 3, 0, 11, 0, 6, 11, 0, 4, 6],
[4, 11, 8, 4, 6, 11, 0, 2, 9, 2, 10, 9],
[10, 9, 3, 10, 3, 2, 9, 4, 3, 11, 3, 6, 4, 6, 3],
[8, 2, 3, 8, 4, 2, 4, 6, 2],
[0, 4, 2, 4, 6, 2],
[1, 9, 0, 2, 3, 4, 2, 4, 6, 4, 3, 8],
[1, 9, 4, 1, 4, 2, 2, 4, 6],
[8, 1, 3, 8, 6, 1, 8, 4, 6, 6, 10, 1],
[10, 1, 0, 10, 0, 6, 6, 0, 4],
[4, 6, 3, 4, 3, 8, 6, 10, 3, 0, 3, 9, 10, 9, 3],
[10, 9, 4, 6, 10, 4],
[4, 9, 5, 7, 6, 11],
[0, 8, 3, 4, 9, 5, 11, 7, 6],
[5, 0, 1, 5, 4, 0, 7, 6, 11],
[11, 7, 6, 8, 3, 4, 3, 5, 4, 3, 1, 5],
[9, 5, 4, 10, 1, 2, 7, 6, 11],
[6, 11, 7, 1, 2, 10, 0, 8, 3, 4, 9, 5],
[7, 6, 11, 5, 4, 10, 4, 2, 10, 4, 0, 2],
[3, 4, 8, 3, 5, 4, 3, 2, 5, 10, 5, 2, 11, 7, 6],
[7, 2, 3, 7, 6, 2, 5, 4, 9],
[9, 5, 4, 0, 8, 6, 0, 6, 2, 6, 8, 7],
[3, 6, 2, 3, 7, 6, 1, 5, 0, 5, 4, 0],
[6, 2, 8, 6, 8, 7, 2, 1, 8, 4, 8, 5, 1, 5, 8],
[9, 5, 4, 10, 1, 6, 1, 7, 6, 1, 3, 7],
[1, 6, 10, 1, 7, 6, 1, 0, 7, 8, 7, 0, 9, 5, 4],
[4, 0, 10, 4, 10, 5, 0, 3, 10, 6, 10, 7, 3, 7, 10],
[7, 6, 10, 7, 10, 8, 5, 4, 10, 4, 8, 10],
[6, 9, 5, 6, 11, 9, 11, 8, 9],
[3, 6, 11, 0, 6, 3, 0, 5, 6, 0, 9, 5],
[0, 11, 8, 0, 5, 11, 0, 1, 5, 5, 6, 11],
[6, 11, 3, 6, 3, 5, 5, 3, 1],
[1, 2, 10, 9, 5, 11, 9, 11, 8, 11, 5, 6],
[0, 11, 3, 0, 6, 11, 0, 9, 6, 5, 6, 9, 1, 2, 10],
[11, 8, 5, 11, 5, 6, 8, 0, 5, 10, 5, 2, 0, 2, 5],
[6, 11, 3, 6, 3, 5, 2, 10, 3, 10, 5, 3],
[5, 8, 9, 5, 2, 8, 5, 6, 2, 3, 8, 2],
[9, 5, 6, 9, 6, 0, 0, 6, 2],
[1, 5, 8, 1, 8, 0, 5, 6, 8, 3, 8, 2, 6, 2, 8],
[1, 5, 6, 2, 1, 6],
[1, 3, 6, 1, 6, 10, 3, 8, 6, 5, 6, 9, 8, 9, 6],
[10, 1, 0, 10, 0, 6, 9, 5, 0, 5, 6, 0],
[0, 3, 8, 5, 6, 10],
[10, 5, 6],
[11, 5, 10, 7, 5, 11],
[11, 5, 10, 11, 7, 5, 8, 3, 0],
[5, 11, 7, 5, 10, 11, 1, 9, 0],
[10, 7, 5, 10, 11, 7, 9, 8, 1, 8, 3, 1],
[11, 1, 2, 11, 7, 1, 7, 5, 1],
[0, 8, 3, 1, 2, 7, 1, 7, 5, 7, 2, 11],
[9, 7, 5, 9, 2, 7, 9, 0, 2, 2, 11, 7],
[7, 5, 2, 7, 2, 11, 5, 9, 2, 3, 2, 8, 9, 8, 2],
[2, 5, 10, 2, 3, 5, 3, 7, 5],
[8, 2, 0, 8, 5, 2, 8, 7, 5, 10, 2, 5],
[9, 0, 1, 5, 10, 3, 5, 3, 7, 3, 10, 2],
[9, 8, 2, 9, 2, 1, 8, 7, 2, 10, 2, 5, 7, 5, 2],
[1, 3, 5, 3, 7, 5],
[0, 8, 7, 0, 7, 1, 1, 7, 5],
[9, 0, 3, 9, 3, 5, 5, 3, 7],
[9, 8, 7, 5, 9, 7],
[5, 8, 4, 5, 10, 8, 10, 11, 8],
[5, 0, 4, 5, 11, 0, 5, 10, 11, 11, 3, 0],
[0, 1, 9, 8, 4, 10, 8, 10, 11, 10, 4, 5],
[10, 11, 4, 10, 4, 5, 11, 3, 4, 9, 4, 1, 3, 1, 4],
[2, 5, 1, 2, 8, 5, 2, 11, 8, 4, 5, 8],
[0, 4, 11, 0, 11, 3, 4, 5, 11, 2, 11, 1, 5, 1, 11],
[0, 2, 5, 0, 5, 9, 2, 11, 5, 4, 5, 8, 11, 8, 5],
[9, 4, 5, 2, 11, 3],
[2, 5, 10, 3, 5, 2, 3, 4, 5, 3, 8, 4],
[5, 10, 2, 5, 2, 4, 4, 2, 0],
[3, 10, 2, 3, 5, 10, 3, 8, 5, 4, 5, 8, 0, 1, 9],
[5, 10, 2, 5, 2, 4, 1, 9, 2, 9, 4, 2],
[8, 4, 5, 8, 5, 3, 3, 5, 1],
[0, 4, 5, 1, 0, 5],
[8, 4, 5, 8, 5, 3, 9, 0, 5, 0, 3, 5],
[9, 4, 5],
[4, 11, 7, 4, 9, 11, 9, 10, 11],
[0, 8, 3, 4, 9, 7, 9, 11, 7, 9, 10, 11],
[1, 10, 11, 1, 11, 4, 1, 4, 0, 7, 4, 11],
[3, 1, 4, 3, 4, 8, 1, 10, 4, 7, 4, 11, 10, 11, 4],
[4, 11, 7, 9, 11, 4, 9, 2, 11, 9, 1, 2],
[9, 7, 4, 9, 11, 7, 9, 1, 11, 2, 11, 1, 0, 8, 3],
[11, 7, 4, 11, 4, 2, 2, 4, 0],
[11, 7, 4, 11, 4, 2, 8, 3, 4, 3, 2, 4],
[2, 9, 10, 2, 7, 9, 2, 3, 7, 7, 4, 9],
[9, 10, 7, 9, 7, 4, 10, 2, 7, 8, 7, 0, 2, 0, 7],
[3, 7, 10, 3, 10, 2, 7, 4, 10, 1, 10, 0, 4, 0, 10],
[1, 10, 2, 8, 7, 4],
[4, 9, 1, 4, 1, 7, 7, 1, 3],
[4, 9, 1, 4, 1, 7, 0, 8, 1, 8, 7, 1],
[4, 0, 3, 7, 4, 3],
[4, 8, 7],
[9, 10, 8, 10, 11, 8],
[3, 0, 9, 3, 9, 11, 11, 9, 10],
[0, 1, 10, 0, 10, 8, 8, 10, 11],
[3, 1, 10, 11, 3, 10],
[1, 2, 11, 1, 11, 9, 9, 11, 8],
[3, 0, 9, 3, 9, 11, 1, 2, 9, 2, 11, 9],
[0, 2, 11, 8, 0, 11],
[3, 2, 11],
[2, 3, 8, 2, 8, 10, 10, 8, 9],
[9, 10, 2, 0, 9, 2],
[2, 3, 8, 2, 8, 10, 0, 1, 8, 1, 10, 8],
[1, 10, 2],
[1, 3, 8, 9, 1, 8],
[0, 9, 1],
[0, 3, 8],
[]
]
configuration = lookup_table[case]
return configuration
def _get_vertex_positions(configuration, coordinate, stepsize):
""" Get the vertex positions corresponding to a list of edge indices.
Parameters
----------
configuration : list[int]
List of edge indices
coordinate : tuple(float, float, float)
Bottom-left corner of cube
stepsize : float
Size length of cube
Returns
-------
configuration_vertices : list[int]
List of triangle vertex coordinates
"""
x, y, z = coordinate # Unpack coordinates
# Relative position on the cube of each edge's midpoint
edge_midpoints = [
(0.5, 0.0, 0.0),
(1.0, 0.0, 0.5),
(0.5, 0.0, 1.0),
(0.0, 0.0, 0.5),
(0.5, 1.0, 0.0),
(1.0, 1.0, 0.5),
(0.5, 1.0, 1.0),
(0.0, 1.0, 0.5),
(0.0, 0.5, 0.0),
(1.0, 0.5, 0.0),
(1.0, 0.5, 1.0),
(0.0, 0.5, 1.0)
]
# Calculate vertex coordinate for each edge index in the configuration
configuration_vertices = []
for index in configuration:
edge_x, edge_y, edge_z = edge_midpoints[index]
configuration_vertices.append(x + stepsize * edge_x)
configuration_vertices.append(y + stepsize * edge_y)
configuration_vertices.append(z + stepsize * edge_z)
return configuration_vertices
# Main functions
def marching_cubes(scalar_field, isovalue, volume_min, volume_max, stepsize):
""" Generates a triangle mesh of an object from a scalar field using marching cubes.
Parameters
----------
scalar_field : function
Scalar field f(x, y, z) defining the object to generate a triangle mesh of
isovalue : float
Boundary value used to define which points are considered to be inside
of the object. If f(x, y, z) < isovalue, then the point (x, y, z) is
considered to be inside of the object. If f(x, y, z) > isovalue, then
the point (x, y, z) is considered to be outside of the object.
volume_min : int
Minimum value of x, y, and z to use in the algorithm.
volume_max : int
Maximum value of x, y, and z to use in the algorithm.
stepsize : float
Side length of each cube in the algorithm.
Returns
-------
mesh_vertices : list[float]
Vertices in the triangle mesh for the object generated by the algorithm
"""
mesh_vertices = [] # Vertices in the triangle mesh for the object generated by the algorithm
# Indices in the lookup table corresponding each cube corner.
# Used to build the bitmask for each case of marching cubes
FRONT_BOTTOM_LEFT = 8
FRONT_BOTTOM_RIGHT = 4
FRONT_TOP_LEFT = 128
FRONT_TOP_RIGHT = 64
BACK_BOTTOM_LEFT = 1
BACK_BOTTOM_RIGHT = 2
BACK_TOP_LEFT = 16
BACK_TOP_RIGHT = 32
# Divide the volume into cubes
for y in np.arange(volume_min, volume_max, stepsize):
for x in np.arange(volume_min, volume_max, stepsize):
for z in np.arange(volume_min, volume_max, stepsize):
# Test if each of the 8 corners of the cube fall inside or
# outside of the object, and build up bitmask
case = 0
if (scalar_field(x, y, z) < isovalue):
case |= BACK_BOTTOM_LEFT
if (scalar_field(x+stepsize, y, z) < isovalue):
case |= BACK_BOTTOM_RIGHT
if (scalar_field(x, y+stepsize, z) < isovalue):
case |= BACK_TOP_LEFT
if (scalar_field(x+stepsize, y+stepsize, z) < isovalue):
case |= BACK_TOP_RIGHT
if (scalar_field(x, y, z+stepsize) < isovalue):
case |= FRONT_BOTTOM_LEFT
if (scalar_field(x+stepsize, y, z+stepsize) < isovalue):
case |= FRONT_BOTTOM_RIGHT
if (scalar_field(x, y+stepsize, z+stepsize) < isovalue):
case |= FRONT_TOP_LEFT
if (scalar_field(x+stepsize, y+stepsize, z+stepsize) < isovalue):
case |= FRONT_TOP_RIGHT
edge_indices = _lookup_configuration(case)
cube_vertices = _get_vertex_positions(edge_indices, (x, y, z), stepsize)
for vertex in cube_vertices:
mesh_vertices.append(vertex)
return mesh_vertices
def compute_normals(vertices):
""" Computes the normal vectors for each vertex in a triangle mesh.
Parameters
----------
vertices : list[float]
Vertices in the triangle mesh
Returns
-------
normals : list[float]
Normal vectors for each vertex in the triangle mesh
"""
normals = [] # Normal vectors for each vertex in the triangle mesh
# Iterate over each triangle in the triangle mesh
for index in np.arange(0, len(vertices), 9):
# Define each vertex of the triangle
vertexA = glm.vec3(vertices[index], vertices[index+1], vertices[index+2])
vertexB = glm.vec3(vertices[index+3], vertices[index+4], vertices[index+5])
vertexC = glm.vec3(vertices[index+6], vertices[index+7], vertices[index+8])
# Define triangle edges
edgeA = vertexB - vertexA
edgeB = vertexC - vertexA
# Compute cross product and normalize for normal vector
normal = glm.normalize(glm.cross(edgeA, edgeB))
# Add normal to the list 3 times (once for each vertex of the triangle)
for i in range(3):
normals.append(normal.x)
normals.append(normal.y)
normals.append(normal.z)
return normals
def writePLY(vertices, normals, filename, comment=None):
""" Writes a triangle mesh to a PLY file.
Parameters
----------
vertices : list[int]
Vertices in the triangle mesh
normals : list[int]
Normal vectors for each vertex in the triangle mesh
filename : str
Filename of PLY file to write triangle mesh to
comment : str
Comment line to write in PLY file
"""
# Get filepath to file
directory = os.path.dirname(os.path.abspath(__file__))
filepath = os.path.join(directory, filename)
num_vertices = int(len(vertices)/3) # Each vertex has 3 coordinates (x, y, z)
num_faces = int(num_vertices/3) # 3 vertices make up 1 triangle face
# Write data to file
with open(filepath, "w") as file:
# Header
file.write("ply\n")
file.write("format ascii 1.0\n")
file.write("comment {}\n".format(comment))
# Vertex metadata
file.write("element vertex {}\n".format(num_vertices))
file.write("property float x\nproperty float y\nproperty float z\n")
file.write("property float nx\nproperty float ny\nproperty float nz\n")
# Triangle face metadata
file.write("element face {}\n".format(num_faces))
file.write("property list uchar uint vertex_indices\n")
file.write("end_header\n")
# Vertex data
for i in np.arange(0, len(vertices), 3): # Iterate over each vertex
file.write("{} {} {} {} {} {}\n".format(vertices[i], vertices[i+1], vertices[i+2],
normals[i], normals[i+1], normals[i+2]))
# Triangle face indices
for i in np.arange(0, num_vertices, 3): # Iterate over groups of vertex indices forming each face
file.write("3 {} {} {}\n".format(i, i+1, i+2))
# Validate input and unpack arguments
if (len(sys.argv) == 7):
_, filename, scalar_field_name, isovalue, volume_min, volume_max, stepsize = sys.argv
else: # Invalid input
raise TypeError("Expected 6 arguments but {} were given.".format(len(sys.argv) - 1))
# Define scalar field function to use from input
if (scalar_field_name == "wavy"):
scalar_field = wavy
elif (scalar_field_name == "hyperboloid"):
scalar_field = hyperboloid
else: # Invalid input
raise ValueError("Undefined scalar field: '{}'. Please enter one of the following options:\n'wavy', 'hyperboloid'".format(scalar_field_name))
# Run marching cubes algorithm and save result
vertices = marching_cubes(scalar_field, float(isovalue), int(volume_min), int(volume_max), float(stepsize)) # Generate vertex positions
normals = compute_normals(vertices) # Compute normals
# Save to file
comment = "Scalar field: '{}', Isovalue: {}, Min. volume: {}, Max. volume: {}, Stepsize: {}".format(scalar_field_name, isovalue, volume_min, volume_max, stepsize)
writePLY(vertices, normals, filename, comment)
print("Marching cubes computation complete!")