-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
521 lines (448 loc) · 16 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
import argparse
import os
from tqdm import tqdm
import time
import datetime
import wandb
import math
import random
import sys
import logging
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader
import torchvision
import numpy as np
from augmentations import RunningNorm, NormalizeBatch
from utils.loss import BarlowTwinsLoss
from utils import utils, transforms, hyperparameters
from utils.torch_mlp_clf import TorchMLPClassifier
import datasets
from model import ModelWrapper, BarlowTwinsHead, BarlowTwinsPredictor
CLASSES = dict(
fsd50k=200,
nsynth=88,
cifar10=10,
)
if torch.cuda.is_available():
torch.backends.cudnn.benchmark = True
def train_one_epoch(args, epoch, model, predictor, barlow_twins_loss, data_loader,
optimizer, fp16_scaler, mask_ratio_schedule, logger, wandb_run):
model.train()
total_loss, total_num, train_bar = 0, 0, tqdm(data_loader)
if args.masked_recon:
total_bt_loss, total_recon_loss = 0, 0
total_data_time, total_forward_time, total_backward_time = 0, 0, 0
tflag = time.time()
for iteration, (images, _) in enumerate(train_bar):
data_time = time.time() - tflag
iteration += len(data_loader) * (epoch - 1) # global training iteration
if args.lr_schedule:
utils.adjust_learning_rate(
args,
optimizer,
data_loader,
iteration,
)
tflag = time.time()
# post-normalization block from BYOL-A [Niizumi et al., 2021]
if args.post_norm:
norm_images = []
for im in images:
norm_images.append(NormalizeBatch()(im))
images = norm_images
# move images to gpu
images = [im.cuda(non_blocking=True) for im in images]
# mask ratio
if args.mask:
if mask_ratio_schedule is not None:
mask_ratio = mask_ratio_schedule[iteration]
elif args.random_mask_ratio:
# randomly sample r ~ U(0.05, beta) with p = 0.5
mask_ratio = utils.generate_random(l=0.05, h=args.mask_beta, p=0.5)
else:
mask_ratio = args.mask_ratio
else:
mask_ratio = 0
# forward passes + compute barlow twins loss
with torch.cuda.amp.autocast(enabled=(fp16_scaler is not None)):
teacher_output = model(
images[:1], # only the 1 global crop passed through the teacher
mask_ratio=mask_ratio,
masked_recon=args.masked_recon,
ncrops=1,
)
# masked recon
if args.masked_recon:
teacher_output, recon_loss = teacher_output
# predictor
teacher_output = predictor(
teacher_output,
ncrops=1,
)
if args.stop_gradient:
with torch.no_grad():
student_output = model(
images[1:], # 1 global crop + all local crops passed through the student
ncrops=args.local_crops_number+1,
)
student_output.detach()
else:
student_output = model(
images[1:], # 1 global crop + all local crops passed through the student
ncrops=args.local_crops_number+1,
)
bt_loss = barlow_twins_loss(
student_output,
teacher_output,
ngcrops_each=1,
)
forward_time = time.time() - tflag
tflag = time.time()
loss = bt_loss
if args.masked_recon:
loss += recon_loss
if not math.isfinite(loss.item()):
print(f'Loss is {loss.item()}. Stopping training')
sys.exit(1)
optimizer.zero_grad()
if fp16_scaler is None:
loss.backward()
optimizer.step()
else:
fp16_scaler.scale(loss).backward()
fp16_scaler.step(optimizer)
fp16_scaler.update()
backward_time = time.time() - tflag
total_num += args.batch_size_per_gpu
total_loss += loss.item() * args.batch_size_per_gpu
if args.masked_recon:
total_bt_loss += bt_loss.item() * args.batch_size_per_gpu
total_recon_loss += recon_loss.item() * args.batch_size_per_gpu
total_data_time += data_time
total_forward_time += forward_time
total_backward_time += backward_time
train_bar.set_description('Train Epoch: [{}/{}] Loss: {:.4f} Data time {:.2f}({:.2f}) Forward time {:.2f}({:.2f}) Backward time {:.2f}({:.2f}))'.format(
epoch, args.epochs, total_loss / total_num,
data_time, total_data_time,
forward_time, total_forward_time,
backward_time, total_backward_time))
if logger is not None:
logger.info('epoch,{},step,{},loss,{}'.format(
epoch, iteration, total_loss / total_num))
if wandb_run is not None:
wandb_run.log({'Loss': total_loss / total_num})
if args.masked_recon:
wandb_run.log({
'barlow twins loss': total_bt_loss / total_num,
'masked recon loss': total_recon_loss / total_num,
})
tflag = time.time()
return total_loss / total_num
@torch.no_grad()
def get_embeddings(model, data_loader, fp16_scaler):
model.eval()
embs, targets = [], []
for data, target in data_loader:
with torch.cuda.amp.autocast(enabled=(fp16_scaler is not None)):
if 'vit' in args.model_type:
emb = utils.encode_vit(
model.encoder,
data.cuda(non_blocking=True),
split_frames=True,
use_cls=args.use_cls,
)
else:
emb = model(data.cuda(non_blocking=True))
if isinstance(emb, list):
emb = emb[-1]
emb = emb.detach().cpu().numpy()
embs.extend(emb)
targets.extend(target.numpy())
return np.array(embs), np.array(targets)
def eval_linear(model, train_loader, val_loader, test_loader, use_fp16):
# mixed precision
fp16_scaler = None
if use_fp16:
fp16_scaler = torch.cuda.amp.GradScaler()
print('Extracting embeddings')
start = time.time()
X_train, y_train = get_embeddings(model, train_loader, fp16_scaler)
X_val, y_val = get_embeddings(model, val_loader, fp16_scaler)
X_test, y_test = get_embeddings(model, test_loader, fp16_scaler)
print(f'Done\tTime elapsed = {time.time() - start:.2f}s')
print('Fitting linear classifier')
start = time.time()
clf = TorchMLPClassifier(
hidden_layer_sizes=(1024,),
max_iter=500,
early_stopping=True,
n_iter_no_change=20,
debug=True,
)
clf.fit(X_train, y_train, X_val=X_val, y_val=y_val)
score_all = clf.score(X_test, y_test)
print(f'Done\tTime elapsed = {time.time() - start:.2f}s')
# Low-shot linear evaluation
print('Performing linear evaluation with 5 example per class')
start = time.time()
score_5 = utils.eval_linear_low_shot(X_train, y_train, X_val, y_val, X_test, y_test, n=5)
print(f'Done\tTime elapsed = {time.time() - start:.2f}s')
results_dict = dict(
score_all = score_all,
score_5 = score_5,
)
return results_dict
def get_fsd50k(args):
norm_stats = [-4.950, 5.855]
eval_train_loader = DataLoader(
datasets.FSD50K(args, split='train', transform=None, norm_stats=norm_stats, crop_frames=711),
batch_size=args.batch_size, shuffle=True, num_workers=args.num_workers, pin_memory=True, drop_last=False,
)
eval_val_loader = DataLoader(
datasets.FSD50K(args, split='val', transform=None, norm_stats=norm_stats, crop_frames=711),
batch_size=args.batch_size, shuffle=True, num_workers=args.num_workers, pin_memory=True, drop_last=False,
)
eval_test_loader = DataLoader(
datasets.FSD50K(args, split='test', transform=None, norm_stats=norm_stats, crop_frames=711),
batch_size=args.batch_size, shuffle=True, num_workers=args.num_workers, pin_memory=True, drop_last=False,
)
return eval_train_loader, eval_val_loader, eval_test_loader
def get_data(args):
if args.dataset == 'cifar10':
train_data = torchvision.datasets.CIFAR10(root='data', train=True, transform=transforms.CifarPairTransform(train_transform=True), download=True)
memory_data = torchvision.datasets.CIFAR10(root='data', train=True, transform=transforms.CifarPairTransform(train_transform=False), download=True)
test_data = torchvision.datasets.CIFAR10(root='data', train=False, transform=transforms.CifarPairTransform(train_transform=False), download=True)
train_loader = DataLoader(train_data, batch_size=args.batch_size_per_gpu, shuffle=True, num_workers=args.num_workers, pin_memory=True, drop_last=True)
memory_loader = DataLoader(memory_data, batch_size=args.batch_size_per_gpu, shuffle=False, num_workers=args.num_workers, pin_memory=True)
test_loader = DataLoader(test_data, batch_size=args.batch_size_per_gpu, shuffle=False, num_workers=args.num_workers, pin_memory=True)
return train_loader, memory_loader, test_loader
elif args.dataset == 'fsd50k':
# fsd50k [mean, std] (lms)
norm_stats = [-4.950, 5.855]
len_files = 40966
if args.pre_norm:
transform = nn.Sequential(
RunningNorm(epoch_samples=len_files),
transforms.AudioPairTransform(args),
)
train_data = datasets.FSD50K(args, split='train_val', transform=transform, norm_stats=None)
else:
transform = transforms.AudioPairTransform(args)
train_data = datasets.FSD50K(args, split='train_val', transform=transform, norm_stats=norm_stats)
elif args.dataset == 'librispeech':
# librispeech960 [mean, std] (lms)
norm_stats = [-3.332, 4.205]
train_data = datasets.LibriSpeech(args, train=True, transform=transforms.AudioPairTransform(args), norm_stats=norm_stats)
elif args.dataset == 'fsd50k+librispeech':
norm_stats_fsd50k = [-4.950, 5.855]
norm_stats_librispeech = [-3.332, 4.205]
train_data = torch.utils.data.dataset.ConcatDataset([
datasets.FSD50K(args, split='train_val', transform=transforms.AudioPairTransform(args), norm_stats=norm_stats_fsd50k),
datasets.LibriSpeech(args, train=True, transform=transforms.AudioPairTransform(args), norm_stats=norm_stats_librispeech),
])
elif args.dataset == 'audioset':
norm_stats = [-0.8294, 4.6230]
train_data = datasets.AudioSet(args, transform=transforms.AudioPairTransform(args), norm_stats=norm_stats)
elif args.dataset == 'audioset+librispeech':
norm_stats_audioset = [-0.8294, 4.6230]
norm_stats_librispeech = [-3.332, 4.205]
train_data = torch.utils.data.dataset.ConcatDataset([
datasets.AudioSet(args, transform=transforms.AudioPairTransform(args), norm_stats=norm_stats_audioset),
datasets.LibriSpeech(args, train=True, transform=transforms.AudioPairTransform(args), norm_stats=norm_stats_librispeech, n_dummy=527),
])
if args.distributed:
train_sampler = torch.utils.data.distributed.DistributedSampler(train_data)
else:
train_sampler = None
train_loader = DataLoader(train_data, batch_size=args.batch_size_per_gpu, shuffle=(True if train_sampler is None else False),
num_workers=args.num_workers, pin_memory=True, sampler=train_sampler, drop_last=True)
return train_loader
def get_optimizer(args, model, predictor):
params = utils.get_param_groups(model)
params.extend(utils.get_param_groups(predictor))
if args.optimizer == 'Adam':
args.wd = 0
optimizer = optim.Adam(params, lr=args.lr, weight_decay=args.wd)
elif args.optimizer == 'AdamW':
optimizer = optim.AdamW(params, lr=args.lr, weight_decay=args.wd)
elif args.optimizer == 'SGD':
args.wd = 0
optimizer = optim.SGD(params, lr=args.lr, weight_decay=args.wd)
elif args.optimizer == 'LARS':
# separate lr for weights and biases using LARS optimizer
param_weights = []
param_biases = []
for param in model.parameters():
if param.ndim == 1:
param_biases.append(param)
else:
param_weights.append(param)
for param in predictor.parameters():
if param.ndim == 1:
param_biases.append(param)
else:
param_weights.append(param)
parameters = [
{'params': param_weights, 'lr': args.lr_weights},
{'params': param_biases, 'lr': args.lr_biases},
]
optimizer = utils.LARS(parameters, lr=0, weight_decay=args.wd,
weight_decay_filter=True, lars_adaptation_filter=True)
return optimizer
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Training args', parents=hyperparameters.get_hyperparameters())
args = parser.parse_args()
hyperparameters.setup_hyperparameters(args)
# distributed training
utils.init_distributed_mode(args)
args.batch_size_per_gpu = int(args.batch_size / args.world_size)
# wandb init
timestamp = datetime.datetime.now().strftime('%H:%M_%h%d')
save_name = '{}_{}_epochs'.format(args.model_type, args.epochs) if args.name == '' else '{}_{}'.format(args.model_type, args.name)
save_name += timestamp
if utils.is_main_process():
wandb_run = wandb.init(
project='Pre-training {}'.format(args.dataset),
config=args,
settings=wandb.Settings(start_method="fork"),
name=save_name,
)
else:
wandb_run = None
# logging
if utils.is_main_process():
log_dir = f"logs/training/{args.dataset}/{save_name}/"
os.makedirs(log_dir, exist_ok=True)
log_path = os.path.join(log_dir, f"log.csv")
logger = logging.getLogger()
logger.setLevel(logging.INFO) # Setup the root logger
logger.addHandler(logging.FileHandler(log_path, mode="a"))
else:
logger = None
# data
if args.dataset == 'cifar10':
assert args.distributed == False, f'Distributed training is not supported with cifar10'
train_loader, memory_loader, test_loader = get_data(args)
else:
train_loader = get_data(args)
# model
model = ModelWrapper(args)
# multi-crop wrapper handles forward with inputs of different resolutions
model = utils.MultiCropWrapper(
backbone=model,
head=BarlowTwinsHead(
args,
in_dim=model.feature_dim,
),
)
# move network to gpu
model = model.cuda()
# predictor network
predictor = BarlowTwinsPredictor(
in_dim=args.projector_out_dim,
use=args.predictor,
)
# move network to gpu
predictor = predictor.cuda()
model_without_ddp = model
predictor_without_ddp = predictor
# set up model for distributed training
if args.distributed:
model, model_without_ddp = utils.model_setup_ddp(args.gpu, model)
if args.predictor:
predictor, predictor_without_ddp = utils.model_setup_ddp(args.gpu, predictor)
# prepare loss
barlow_twins_loss = BarlowTwinsLoss(
args,
ncrops=args.local_crops_number+2, # total number of crops = 2 global crops + local_crops_number
).cuda()
# optimizer
optimizer = get_optimizer(
args,
model_without_ddp,
predictor_without_ddp,
)
# mixed precision
fp16_scaler = None
if args.use_fp16:
fp16_scaler = torch.cuda.amp.GradScaler()
# schedule for mask ratio
mask_ratio_schedule = None
if args.mask_ratio_schedule:
mask_ratio_schedule = utils.sine_scheduler_increase(
final_value=args.mask_beta,
epochs=args.epochs,
niter_per_ep=len(train_loader),
warmup_epochs=int(args.epochs / 5),
warmup_value=0,
)
# model checkpoint path
ckpt_path = os.path.join(args.save_base_dir, f'results/{args.dataset}/{save_name}')
os.makedirs(ckpt_path, exist_ok=True)
# resume training from checkpoint
resume_epoch = 1
if args.resume_path is not None:
resume_epoch = utils.load_checkpoint(
ckpt_path=args.resume_path,
model=model,
predictor=predictor,
optimizer=optimizer,
)
# training
for epoch in range(resume_epoch, args.epochs+1):
train_loss = train_one_epoch(
args,
epoch,
model,
predictor,
barlow_twins_loss,
train_loader,
optimizer,
fp16_scaler,
mask_ratio_schedule,
logger,
wandb_run,
)
if args.dataset == 'cifar10':
if utils.is_main_process():
test_acc_1, test_acc_5 = utils.eval_knn(model_without_ddp.backbone.encoder, memory_loader, test_loader, epoch, args.epochs, 10)
if wandb_run is not None:
wandb_run.log({'knn_test_acc_1': test_acc_1, 'knn_test_acc_5': test_acc_5})
if epoch % args.epoch_save_f == 0 or epoch == args.epochs:
save_dict = {
'model': model.state_dict(),
'predictor': predictor.state_dict(),
'optimizer': optimizer.state_dict(),
'epoch': epoch + 1,
'args': args,
'barlow_twins_loss': barlow_twins_loss.state_dict(),
}
utils.save_on_master(
save_dict,
ckpt_path + f'/model_{epoch}.pth',
)
if epoch % args.epoch_eval_f == 0 or epoch == args.epochs:
if utils.is_main_process():
if args.dataset == 'cifar10':
pass
else:
if not args.no_eval:
eval_train_loader, eval_val_loader, eval_test_loader = get_fsd50k(args)
scores = eval_linear(
model_without_ddp.backbone.encoder,
eval_train_loader,
eval_val_loader,
eval_test_loader,
args.use_fp16_eval,
)
score_all = scores.get('score_all')
score_5 = scores.get('score_5')
if logger is not None:
logger.info('epoch,{},step,{},linear_score,{},linear_score_5_mean,{},linear_score_5_std,{}'.format(
epoch,len(train_loader)*epoch,score_all,score_5[0],score_5[1]))
wandb_run.log({
'FSD50K score (100%)': score_all,
'FSD50K score (5pC) (mean)': score_5[0],
})