-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
221 lines (190 loc) · 8.43 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
import os
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3"
from argparse import ArgumentParser
import wandb
from transformers import Trainer, TrainingArguments, get_wsd_schedule
from transformers import DataCollatorForLanguageModeling, default_data_collator
import torch
from datasets import load_dataset, load_from_disk, Dataset, DatasetDict
import numpy as np
from src.model import make_model, make_tokenizer
def make_optimizer(model, learning_rate, weight_decay):
no_decay = ["bias", "layer_norm.weight"]
optimizer_grouped_parameters = [
{
"params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)],
"weight_decay": weight_decay,
},
{
"params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)],
"weight_decay": 0.0,
},
]
optimizer = torch.optim.AdamW(optimizer_grouped_parameters, lr=learning_rate)
return optimizer
def compute_accuracy_clf(eval_pred):
logits, labels = eval_pred
predictions = np.argmax(logits, axis=-1)
return {"accuracy": np.mean(predictions == labels)}
def compute_accuracy_lm(eval_preds):
preds, labels = eval_preds
# only compute accuracy for the last token ([ACTION] token)
labels_last_token = labels[:, -1]
preds_last_token = preds[:, -1]
scores = (labels_last_token == preds_last_token)
return {"accuracy": np.mean(scores)}
def preprocess_logits_for_metrics_lm(logits, labels):
if isinstance(logits, tuple):
# Depending on the model and config, logits may contain extra tensors,
# like past_key_values, but logits always come first
logits = logits[0]
return torch.argmax(logits, dim=-1)
def run_training(args):
tokenizer = make_tokenizer(args.task)
if args.task == "clf":
task = "text-classification"
max_position_embeddings = 78 # 77 + [CLS] -> as in the paper (for bc and sv predictors, +1 for av)
batch_size = 1024 # bs 1024 in the paper on 4x 95G tpu, try to fit as much as possible ...
grad_acc = 1
compute_metrics = compute_accuracy_clf
preprocess_logits_for_metrics = None
data_collator = default_data_collator
elif args.task == "lm":
task = "text-generation"
max_position_embeddings = 79 # 77 + [ACTION] + a
batch_size = 512
grad_acc = 2
compute_metrics = compute_accuracy_lm
preprocess_logits_for_metrics = preprocess_logits_for_metrics_lm
data_collator = DataCollatorForLanguageModeling(mlm=False, tokenizer=tokenizer)
# TODO: maybe pad seq lengths to multiple of 128
# https://huggingface.co/docs/transformers/en/main_classes/data_collator#transformers.DataCollatorForLanguageModeling
elif args.task == "lm-cot":
raise NotImplementedError("task type lm-cot is not yet implemented")
task = "text-generation"
max_position_embeddings = 116 # 77 + [OPTIONS] + 5o + [VALUES] + 5v + [ACTION] + a
grad_acc = 2
batch_size = 512
compute_metrics = None
preprocess_logits_for_metrics = None
data_collator = None
else:
raise ValueError(f"Unknown task: {args.task}")
learning_rate = 4e-4 # as in the paper
weight_decay = 0.01
scheduler = "warmup_stable_decay" # constant, linear, cosine or warmup_stable_decay
num_warmup_steps = 500
stable_pct = 0.9 # pct of steps in stable lr for wsd scheduler
num_epochs = 10 # 2.7-3.2 in the paper for ablations, 5.4 for full training
num_devices = 2
min_lr_ratio = 0.1
def encode(examples):
return tokenizer(examples["text"], truncation=True, padding="max_length")
model = make_model({
"pad_token_id": tokenizer.pad_token_id,
"hidden_size": 256, # embedding dimension from the paper
"intermediate_size": 1024, # not specified
"num_hidden_layers": 8, # as in the paper
"num_attention_heads": 8, # as in the paper
"max_position_embeddings": max_position_embeddings,
"torch_dtype": torch.bfloat16,
#"attn_implementation": "flash_attention_2",
#"device_map": "auto",
"device": "cuda",
"finetuning_task": task,
}, arch=args.arch.lower())
if os.path.exists(args.dataset):
dataset = load_from_disk(args.dataset)
else:
dataset = load_dataset(args.dataset)
if isinstance(dataset, Dataset):
dataset = DatasetDict({"train": dataset})
if args.val:
if os.path.exists(args.val):
val_dataset = load_from_disk(args.val)
else:
val_dataset = load_dataset(args.val)
if isinstance(val_dataset, DatasetDict):
split = "test" if "test" in val_dataset else "train"
dataset["test"] = val_dataset[split]
else:
dataset["test"] = val_dataset
else:
dataset = dataset["train"].train_test_split(test_size=0.01)
if args.max_samples and len(dataset["train"]) > args.max_samples:
dataset["train"] = dataset["train"].select(range(args.max_samples))
if task == "text-classification":
dataset["train"] = dataset["train"].class_encode_column("label")
dataset["train"] = dataset["train"].align_labels_with_mapping(
label2id=model.config.label2id, label_column="label")
class_label_feature = dataset["train"].features["label"]
dataset["test"] = dataset["test"].cast_column("label", class_label_feature)
dataset = dataset.map(encode, batched=True)
print(dataset)
total_steps = (len(dataset["train"]) // (batch_size * num_devices)) * num_epochs
num_stable_steps = int(total_steps * stable_pct)
num_decay_steps = total_steps - num_stable_steps
if scheduler == "warmup_stable_decay":
optimizer = make_optimizer(model, learning_rate, weight_decay)
schedule = get_wsd_schedule(
optimizer=optimizer,
num_warmup_steps=num_warmup_steps,
num_stable_steps=num_stable_steps,
num_decay_steps=num_decay_steps,
min_lr_ratio=min_lr_ratio
)
else:
optimizer, schedule = None, None
training_args = TrainingArguments(
per_device_train_batch_size=batch_size,
gradient_accumulation_steps=grad_acc,
gradient_checkpointing=False, # trade off between speed and memory
bf16=True,
learning_rate=learning_rate,
torch_compile=True,
output_dir="checkpoints/save_"+args.run,
per_device_eval_batch_size=int(batch_size/2),
eval_strategy="steps",
eval_steps=500,
eval_on_start=True,
num_train_epochs=num_epochs,
#max_steps=5e6, # 5e6 in the paper, 40m samples, bs 1024 -> 128 Epochs !?!
lr_scheduler_type=scheduler,
warmup_steps=num_warmup_steps,
save_strategy="epoch",
log_level="error",
report_to="wandb" if args.run else "none",
run_name=args.run,
)
trainer = Trainer(
model=model,
tokenizer=tokenizer,
args=training_args,
train_dataset=dataset["train"],
eval_dataset=dataset["test"],
data_collator=data_collator,
compute_metrics=compute_metrics,
optimizers=(optimizer, schedule),
preprocess_logits_for_metrics=preprocess_logits_for_metrics,
)
model_class = str(type(model)).split("'")[1].split(".")[-1]
print(f"training {model_class} with {model.num_parameters():,} parameters")
trainer.train()
trainer.save_model("checkpoints/save_"+args.run)
tokenizer.save_pretrained("checkpoints/save_"+args.run)
if __name__ == "__main__":
parser = ArgumentParser("Run training")
parser.add_argument("dataset", help="Local or remote HF Dataset name")
parser.add_argument("-task", default="clf", help="Training task (clf|lm|lm-cot)")
parser.add_argument("-max_samples", type=int, default=40_000_000, help="Max Samples")
parser.add_argument("-val", help="Local or remote HF Dataset name for validation")
parser.add_argument("-max_steps", type=int, help="Max Steps")
parser.add_argument("-run", help="W&B run name, None for no logging")
parser.add_argument("-arch", default="llama", help="Llama or GPT2 architecture")
args = parser.parse_args()
# set the wandb project where this run will be logged
os.environ["WANDB_PROJECT"]="ROOK"
# turn off watch to log faster
os.environ["WANDB_WATCH"]="false"
run_training(args)
wandb.finish()