forked from bearycool11/PMLL_logic_loop_Knowledge_block
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathInterchainAI.py
131 lines (110 loc) · 4.09 KB
/
InterchainAI.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
from fastapi import FastAPI, Depends, HTTPException
from pydantic import BaseModel
import pickle
from typing import List
# Initialize FastAPI
app = FastAPI(
title="Finn - Brain of ChatGPT and OpenAI",
description=(
"Finn integrates PMLL, ARLL, and EFLL into a unified cognitive system for "
"sentiment analysis, reinforcement learning, and emotional interaction. "
"For more resources, visit [Interchain.io](https://interchain.io) "
"and [OpenAI Docs](https://platform.openai.com/docs)."
),
version="1.0.0",
)
# ---- Core Brain Components (PMLL, ARLL, EFLL) ----
class PMLLMemory:
"""Persistent Memory to store historical data."""
def __init__(self):
self.history = []
def save(self, input_text, prediction, feedback=None):
entry = {"text": input_text, "prediction": prediction, "feedback": feedback}
self.history.append(entry)
def get_history(self):
return self.history
class ARLL:
"""Adaptive Reinforcement Learning for model improvement."""
def __init__(self, model):
self.model = model
self.feedback_data = []
def record_feedback(self, input_text, true_sentiment):
self.feedback_data.append((input_text, true_sentiment))
def retrain_model(self):
# Simulated model improvement logic
print(f"Retraining model with {len(self.feedback_data)} feedback entries.")
class EFLL:
"""Emotional Feedback Learning for empathetic responses."""
def provide_emotional_feedback(self, sentiment):
feedback_map = {
"positive": "That's great to hear!",
"negative": "I'm sorry to hear that. Let me know how I can help.",
"neutral": "Thanks for sharing your thoughts."
}
return feedback_map.get(sentiment, "Thank you for your input.")
# ---- Initialize Framework Components ----
pmll_memory = PMLLMemory()
arll = ARLL(model=None) # Model will be loaded dynamically
efll = EFLL()
# ---- Model Loading ----
def load_model():
try:
with open("sentiment_model.pkl", "rb") as f:
return pickle.load(f)
except FileNotFoundError:
raise HTTPException(status_code=500, detail="Model file not found.")
@app.on_event("startup")
def startup_event():
global model
model = load_model()
arll.model = model # Link the loaded model to ARLL
# ---- FastAPI Endpoints ----
class TextInput(BaseModel):
text: str
class FeedbackInput(BaseModel):
text: str
true_sentiment: str
@app.post("/predict")
async def predict(input: TextInput, model=Depends(load_model)):
try:
prediction = model.predict([input.text])[0]
pmll_memory.save(input.text, prediction) # Store in PMLL
emotional_feedback = efll.provide_emotional_feedback(prediction) # Generate EFLL response
return {
"text": input.text,
"sentiment": prediction,
"emotional_feedback": emotional_feedback,
"resources": {
"Interchain.io": "https://interchain.io",
"OpenAI Docs": "https://platform.openai.com/docs",
},
}
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@app.post("/feedback")
async def feedback(input: FeedbackInput):
arll.record_feedback(input.text, input.true_sentiment)
pmll_memory.save(input.text, None, feedback=input.true_sentiment) # Log feedback in PMLL
return {"message": "Feedback recorded. Thank you!"}
@app.post("/retrain")
async def retrain_model():
arll.retrain_model()
return {"message": "Model retrained successfully."}
@app.get("/history")
async def get_history():
return {
"history": pmll_memory.get_history(),
"resources": {
"Interchain.io": "https://interchain.io",
"OpenAI Docs": "https://platform.openai.com/docs",
},
}
@app.get("/")
async def root():
return {
"message": "Welcome to Finn, the Brain of ChatGPT and OpenAI.",
"resources": {
"Interchain.io": "https://interchain.io",
"OpenAI Docs": "https://platform.openai.com/docs",
},
}