-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathindex.html
140 lines (122 loc) · 9.28 KB
/
index.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
<!DOCTYPE html>
<html>
<head>
<title>Image upscaling/super-resolution in the browser (with JS/ONNX)</title>
<script src="github-pages-coop-coep-workaround.js"></script>
</head>
<body>
<script src="https://cdn.jsdelivr.net/npm/[email protected]/dist/ort.js"></script>
<div>
Select one or more images: <input type="file" accept="image/*" multiple id="fileInputEl"> or <button onclick="loadImageByUrl(exampleImgEl.src); this.disabled=true; exampleImgEl.style.display=''; this.innerHTML='done.';">use example image</button>
<br>
<img style="display:none" id="exampleImgEl" src=""/>
<br>
Then click here: <button id="startBtn" onclick="main()" disabled>loading model. please wait...</button>
<br>
Save all the resulting upscaled images: <button id="downloadBtn" disabled onclick="downloadOutputImages()">save</button>
</div>
<p><a href="https://github.com/josephrocca/super-resolution-js">github repo</a> - <a href="https://huggingface.co/rocca/swin-ir-onnx">huggingface repo</a></p>
<script>
let exampleImageBlob;
async function loadImageByUrl(url) {
exampleImageBlob = await fetch(url).then(r => r.blob());
}
if(self.crossOriginIsolated) { // needs to be cross-origin-isolated to use wasm threads. you need to serve this html file with these two headers: https://web.dev/coop-coep/
ort.env.wasm.numThreads = navigator.hardwareConcurrency / 2;
}
ort.env.wasm.proxy = true;
if(!window.OffscreenCanvas) alert("Your browser doesn't support OffscreenCanvas - a browser feature that was standardized way back in 2018. Please use a modern browser like Chrome, Edge or Brave.");
let onnxSession;
(async function() {
console.log("Downloading model... (see network tab for progress)");
let t = Date.now();
onnxSession = await ort.InferenceSession.create('https://huggingface.co/rocca/swin-ir-onnx/resolve/main/003_realSR_BSRGAN_DFO_s64w8_SwinIR-M_x4_GAN.onnx', { executionProviders: ["wasm"] });
console.log(`Model loaded in ${Date.now()-t} ms.`);
startBtn.disabled = false;
startBtn.textContent = "start";
})();
async function main() {
if(!fileInputEl.files[0] && !exampleImageBlob) return alert("Please select some images first.");
startBtn.disabled = true;
startBtn.innerHTML = "processing...";
let files = fileInputEl.files[0] ? fileInputEl.files : [exampleImageBlob];
let inputBlob;
for(let inputBlob of files) {
let {data, width, height} = await blobToLinearRGBArray(inputBlob);
const feeds = {'input': new ort.Tensor('float32', data, [1, 3, height, width])};
console.log("Running inference...");
let t = Date.now();
const results = await onnxSession.run(feeds);
console.log(`Finished in ${Date.now()-t}ms`);
const out = results["output"]; // greyscale data tensor
console.log(`results:`, out);
// out.data is of shape/form Channel-Red-Green-Blue
let blob = await CRGBArrayToBlob(out.data, {width:out.dims[3], height:out.dims[2]});
let blobUrl = URL.createObjectURL(blob);
let imgEl = document.createElement("img");
imgEl.dataset.name = inputBlob.name;
imgEl.src = blobUrl;
document.body.appendChild(imgEl);
}
startBtn.disabled = false;
startBtn.innerHTML = "start";
downloadBtn.disabled = false;
}
async function getBlobImageDims(blob) {
let img = await createImageBitmap(blob);
return {width:img.width, height:img.height};
}
function CRGBArrayToBlob(linearArr, dims) {
let dataArray = [];
let numPixels = dims.height * dims.width;
for(let y = 0; y < dims.height; y++) {
for(let x = 0; x < dims.width; x++) {
let i = y*dims.width + x;
dataArray[i*4+0] = Math.round(255*linearArr[i+0]);
dataArray[i*4+1] = Math.round(255*linearArr[i+numPixels]);
dataArray[i*4+2] = Math.round(255*linearArr[i+2*numPixels]);
dataArray[i*4+3] = 255;
}
}
let imageData = new ImageData(new Uint8ClampedArray(dataArray), dims.width, dims.height);
let canvas = new OffscreenCanvas(dims.width, dims.height);
let ctx = canvas.getContext("2d");
ctx.putImageData(imageData, 0, 0);
return canvas.convertToBlob({type:"image/png"});
}
// this function resizes to 256px width
async function blobToLinearRGBArray(blob) {
let img = await createImageBitmap(blob);
let canvas = new OffscreenCanvas(img.width, img.height);
let ctx = canvas.getContext("2d");
ctx.drawImage(img, 0, 0, canvas.width, canvas.height);
let imageData = ctx.getImageData(0, 0, canvas.width, canvas.height);
let rgbData = [[], [], []]; // [r, g, b]
// remove alpha and put into correct shape:
let d = imageData.data;
for(let i = 0; i < d.length; i += 4) {
let x = (i/4) % canvas.width;
let y = Math.floor((i/4) / canvas.width)
if(!rgbData[0][y]) rgbData[0][y] = [];
if(!rgbData[1][y]) rgbData[1][y] = [];
if(!rgbData[2][y]) rgbData[2][y] = [];
rgbData[0][y][x] = d[i+0]/255;
rgbData[1][y][x] = d[i+1]/255;
rgbData[2][y][x] = d[i+2]/255;
}
rgbData = Float32Array.from(rgbData.flat().flat());
return {data:rgbData, width:img.width, height:img.height};
}
async function downloadOutputImages() {
let directoryHandle = await window.showDirectoryPicker();
for(let img of [...document.querySelectorAll("img")]) {
let url = img.src;
let name = img.dataset.name;
let fileHandle = await directoryHandle.getFileHandle(name, {create:true});
let response = await fetch(url);
await response.body.pipeTo(await fileHandle.createWritable());
}
}
</script>
</body>
</html>