-
Notifications
You must be signed in to change notification settings - Fork 43
/
Copy pathtrain_ctc.py
executable file
·216 lines (194 loc) · 6.77 KB
/
train_ctc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
#!/usr/bin/env python3
from typing import Any, Dict, List, Optional
import jsonargparse
import pytorch_lightning as pl
import torch
import laia.common.logging as log
from laia.callbacks import LearningRate, ProgressBar, ProgressBarGPUStats
from laia.common.arguments import (
CommonArgs,
DataArgs,
OptimizerArgs,
SchedulerArgs,
TrainArgs,
TrainerArgs,
)
from laia.common.loader import ModelLoader
from laia.engine import Compose, DataModule, HTREngineModule, ImageFeeder, ItemFeeder
from laia.loggers import EpochCSVLogger
from laia.scripts.htr import common_main
from laia.utils import ImageStats, SymbolsTable
def run(
syms: str,
img_dirs: List[str],
tr_txt_table: str,
va_txt_table: str,
common: CommonArgs = CommonArgs(),
train: TrainArgs = TrainArgs(),
optimizer: OptimizerArgs = OptimizerArgs(),
scheduler: SchedulerArgs = SchedulerArgs(),
data: DataArgs = DataArgs(),
trainer: TrainerArgs = TrainerArgs(),
num_workers: Optional[int] = None,
):
pl.seed_everything(common.seed)
loader = ModelLoader(
common.train_path, filename=common.model_filename, device="cpu"
)
# maybe load a checkpoint
checkpoint = None
if train.resume:
checkpoint = loader.prepare_checkpoint(
common.checkpoint, common.experiment_dirpath, common.monitor
)
trainer.max_epochs = torch.load(checkpoint)["epoch"] + train.resume
log.info(f'Using checkpoint "{checkpoint}"')
log.info(f"Max epochs set to {trainer.max_epochs}")
# load the non-pytorch_lightning model
model = loader.load()
assert (
model is not None
), "Could not find the model. Have you run pylaia-htr-create-model?"
# prepare the symbols
syms = SymbolsTable(syms)
for d in train.delimiters:
assert d in syms, f'The delimiter "{d}" is not available in the symbols file'
# prepare the engine
engine_module = HTREngineModule(
model,
[syms[d] for d in train.delimiters],
optimizer=optimizer,
scheduler=scheduler,
batch_input_fn=Compose([ItemFeeder("img"), ImageFeeder()]),
batch_target_fn=ItemFeeder("txt"),
batch_id_fn=ItemFeeder("id"), # Used to print image ids on exception
)
# prepare the data
im_stats = ImageStats(
stage="fit",
tr_txt_table=tr_txt_table,
va_txt_table=va_txt_table,
img_dirs=img_dirs,
)
data_module = DataModule(
syms=syms,
img_dirs=img_dirs,
tr_txt_table=tr_txt_table,
va_txt_table=va_txt_table,
batch_size=data.batch_size,
min_valid_size=model.get_min_valid_image_size(im_stats.max_width)
if im_stats.is_fixed_height
else None,
color_mode=data.color_mode,
# shuffle_tr=not bool(trainer.limit_train_batches),
shuffle_tr=True if trainer.limit_train_batches == 1 else False,
augment_tr=train.augment_training,
stage="fit",
num_workers=num_workers,
)
# prepare the training callbacks
# TODO: save on lowest_va_wer and every k epochs https://github.com/PyTorchLightning/pytorch-lightning/issues/2908
checkpoint_callback = pl.callbacks.ModelCheckpoint(
dirpath=common.experiment_dirpath,
filename="{epoch}-lowest_" + common.monitor,
monitor=common.monitor,
verbose=True,
save_top_k=train.checkpoint_k,
mode="min",
save_last=True,
)
checkpoint_callback.CHECKPOINT_NAME_LAST = "{epoch}-last"
early_stopping_callback = pl.callbacks.EarlyStopping(
monitor=common.monitor,
patience=train.early_stopping_patience,
verbose=True,
mode="min",
strict=False, # training_step may return None
)
callbacks = [
ProgressBar(refresh_rate=trainer.progress_bar_refresh_rate),
checkpoint_callback,
early_stopping_callback,
checkpoint_callback,
]
if train.gpu_stats:
callbacks.append(ProgressBarGPUStats())
if scheduler.active:
callbacks.append(LearningRate(logging_interval="epoch"))
# prepare the trainer
trainer = pl.Trainer(
default_root_dir=common.train_path,
resume_from_checkpoint=checkpoint,
callbacks=callbacks,
logger=EpochCSVLogger(common.experiment_dirpath),
checkpoint_callback=True,
**vars(trainer),
)
# train!
trainer.fit(engine_module, datamodule=data_module)
# training is over
if early_stopping_callback.stopped_epoch:
log.info(
"Early stopping triggered after epoch"
f" {early_stopping_callback.stopped_epoch + 1} (waited for"
f" {early_stopping_callback.wait_count} epochs). The best score was"
f" {early_stopping_callback.best_score}"
)
log.info(
f"Model has been trained for {trainer.current_epoch + 1} epochs"
f" ({trainer.global_step + 1} steps)"
)
log.info(
f"Best {checkpoint_callback.monitor}={checkpoint_callback.best_model_score} "
f"obtained with model={checkpoint_callback.best_model_path}"
)
def get_args(argv: Optional[List[str]] = None) -> Dict[str, Any]:
parser = jsonargparse.ArgumentParser(parse_as_dict=True)
parser.add_argument(
"--config", action=jsonargparse.ActionConfigFile, help="Configuration file"
)
parser.add_argument(
"syms",
type=str,
help=(
"Mapping from strings to integers. "
"The CTC symbol must be mapped to integer 0"
),
)
parser.add_argument(
"img_dirs",
type=List[str],
default=[],
help="Directories containing segmented line images",
)
parser.add_argument(
"tr_txt_table",
type=str,
help="Character transcription of each training image",
)
parser.add_argument(
"va_txt_table",
type=str,
help="Character transcription of each validation image",
)
parser.add_class_arguments(CommonArgs, "common")
parser.add_class_arguments(DataArgs, "data")
parser.add_class_arguments(TrainArgs, "train")
parser.add_function_arguments(log.config, "logging")
parser.add_class_arguments(OptimizerArgs, "optimizer")
parser.add_class_arguments(SchedulerArgs, "scheduler")
parser.add_class_arguments(TrainerArgs, "trainer")
args = parser.parse_args(argv, with_meta=False)
args["common"] = CommonArgs(**args["common"])
args["train"] = TrainArgs(**args["train"])
args["data"] = DataArgs(**args["data"])
args["optimizer"] = OptimizerArgs(**args["optimizer"])
args["scheduler"] = SchedulerArgs(**args["scheduler"])
args["trainer"] = TrainerArgs(**args["trainer"])
return args
def main():
args = get_args()
args = common_main(args)
run(**args)
if __name__ == "__main__":
main()