-
Notifications
You must be signed in to change notification settings - Fork 230
/
visualize.Rmd
1398 lines (994 loc) · 47.4 KB
/
visualize.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
---
output: html_document
chapter: data-visualization
editor_options:
chunk_output_type: console
---
# Data visualisation {#data-visualisation .r4ds-section}
## Introduction {#introduction-1 .r4ds-section}
```{r setup,message=FALSE,cache=FALSE}
library("tidyverse")
```
## First steps {#first-steps .r4ds-section}
### Exercise 3.2.1{.unnumbered .exercise data-number="3.2.1"}
<div class="question">
Run `ggplot(data = mpg)` what do you see?
</div>
<div class="answer">
```{r}
ggplot(data = mpg)
```
This code creates an empty plot.
The `ggplot()` function creates the background of the plot,
but since no layers were specified with geom function, nothing is drawn.
</div>
### Exercise 3.2.2 {.unnumbered .exercise data-number="3.2.2"}
<div class="question">
How many rows are in `mpg`?
How many columns?
</div>
<div class="answer">
There are `r nrow(mpg)` rows and `r ncol(mpg)` columns in the `mpg` data frame.
```{r}
nrow(mpg)
ncol(mpg)
```
The `glimpse()` function also displays the number of rows and columns in a data frame.
```{r}
glimpse(mpg)
```
</div>
### Exercise 3.2.3 {.unnumbered .exercise data-number="3.2.3"}
<div class="question">
What does the `drv` variable describe?
Read the help for `?mpg` to find out.
</div>
<div class="answer">
The `drv` variable is a categorical variable which categorizes cars into front-wheels, rear-wheels, or four-wheel drive.[^layout]
| Value | Description |
|------------|-----------------------------------------------------------------------------------------------|
| `"f"` | [front-wheel drive](https://en.wikipedia.org/wiki/Front-wheel_drive) |
| `"r"` | [rear-wheel drive](https://en.wikipedia.org/wiki/Automobile_layout#Rear-wheel-drive_layouts) |
| `"4"` | [four-wheel drive](https://en.wikipedia.org/wiki/Four-wheel_drive) |
[^layout]: See the Wikipedia article on [Automobile layout](https://en.wikipedia.org/wiki/Automobile_layout).
</div>
### Exercise 3.2.4 {.unnumbered .exercise data-number="3.2.4"}
<div class="question">
Make a scatter plot of `hwy` vs. `cyl`.
</div>
<div class="answer">
```{r}
ggplot(mpg, aes(x = cyl, y = hwy)) +
geom_point()
```
</div>
### Exercise 3.2.5 {.unnumbered .exercise data-number="3.2.5"}
<div class="question">
What happens if you make a scatter plot of `class` vs `drv`?
Why is the plot not useful?
</div>
<div class="answer">
The resulting scatterplot has only a few points.
```{r}
ggplot(mpg, aes(x = class, y = drv)) +
geom_point()
```
```{r include=FALSE}
n_drv <- length(unique(mpg$drv))
n_class <- length(unique(mpg$class))
n_comb <- n_drv * n_class
n_comb_actual <- nrow(distinct(mpg, drv, class))
```
A scatter plot is not a useful display of these variables since both `drv` and `class` are categorical variables.
Since categorical variables typically take a small number of values,
there are a limited number of unique combinations of (`x`, `y`) values that can be displayed.
In this data, `drv` takes `r n_drv` values and `class` takes `r n_class` values,
meaning that there are only `r n_comb` values that could be plotted on a scatterplot of `drv` vs. `class`.
In this data, there `r n_comb_actual` values of (`drv`, `class`) are observed.
```{r}
count(mpg, drv, class)
```
A simple scatter plot does not show how many observations there are for each (`x`, `y`) value.
As such, scatterplots work best for plotting a continuous x and a continuous y variable, and when all (`x`, `y`) values are unique.
**Warning:** The following code uses functions introduced in a later section.
Come back to this after reading
section [7.5.2](https://r4ds.had.co.nz/exploratory-data-analysis.html#two-categorical-variables), which introduces methods for plotting two categorical variables.
The first is `geom_count()` which is similar to a scatterplot but uses the size of the points to show the number of observations at an (`x`, `y`) point.
```{r}
ggplot(mpg, aes(x = class, y = drv)) +
geom_count()
```
The second is `geom_tile()` which uses a color scale to show the number of observations with each (`x`, `y`) value.
```{r}
mpg %>%
count(class, drv) %>%
ggplot(aes(x = class, y = drv)) +
geom_tile(mapping = aes(fill = n))
```
In the previous plot, there are many missing tiles.
These missing tiles represent unobserved combinations of `class` and `drv` values.
These missing values are not unknown, but represent values of (`class`, `drv`) where `n = 0`.
The `complete()` function in the tidyr package adds new rows to a data frame for missing combinations of columns.
The following code adds rows for missing combinations of `class` and `drv` and uses the `fill` argument to set `n = 0` for those new rows.
```{r}
mpg %>%
count(class, drv) %>%
complete(class, drv, fill = list(n = 0)) %>%
ggplot(aes(x = class, y = drv)) +
geom_tile(mapping = aes(fill = n))
```
</div>
## Aesthetic mappings {#aesthetic-mappings .r4ds-section}
### Exercise 3.3.1 {.unnumbered .exercise data-number="3.3.1"}
<div class="question">
What’s gone wrong with this code?
Why are the points not blue?
```{r}
ggplot(data = mpg) +
geom_point(mapping = aes(x = displ, y = hwy, colour = "blue"))
```
</div>
<div class="answer">
The argument`colour = "blue"` is included within the `mapping` argument, and as such, it is treated as an aesthetic, which is a mapping between a variable and a value.
In the expression, `colour = "blue"`, `"blue"` is interpreted as a categorical variable which only takes a single value `"blue"`.
If this is confusing, consider how `colour = 1:234` and `colour = 1` are interpreted by `aes()`.
The following code does produces the expected result.
```{r}
ggplot(data = mpg) +
geom_point(mapping = aes(x = displ, y = hwy), colour = "blue")
```
</div>
### Exercise 3.3.2 {.unnumbered .exercise data-number="3.3.2"}
<div class="question">
Which variables in `mpg` are categorical?
Which variables are continuous?
(Hint: type `?mpg` to read the documentation for the dataset).
How can you see this information when you run `mpg`?
</div>
<div class="answer">
The following list contains the categorical variables in `mpg`:
- `manufacturer`
- `model`
- `trans`
- `drv`
- `fl`
- `class`
The following list contains the continuous variables in `mpg`:
- `displ`
- `year`
- `cyl`
- `cty`
- `hwy`
In the printed data frame, angled brackets at the top of each column provide type of each variable.
```{r}
mpg
```
Those with `<chr>` above their columns are categorical, while those with `<dbl>` or `<int>` are continuous.
The exact meaning of these types will be discussed in ["Chapter 15: Vectors"](https://jrnold.github.io/r4ds-exercise-solutions/vectors.html).
`glimpse()` is another function that concisely displays the type of each column in the data frame:
```{r}
glimpse(mpg)
```
For those lists, I considered any variable that was non-numeric was considered categorical and any variable that was numeric was considered continuous.
This largely corresponds to the heuristics `ggplot()` uses for will interpreting variables as discrete or continuous.
However, this definition of continuous vs. categorical misses several important cases.
Of the numeric variables, `year` and `cyl` (cylinders) clearly take on discrete values.
The variables `cty` and `hwy` are stored as integers (`int`) so they only take on a discrete values.
Even though `displ` has
In some sense, due to measurement and computational constraints all numeric variables are discrete ().
But unlike the categorical variables, it is possible to add and subtract these numeric variables in a meaningful way.
The typology of [levels of measurement](https://en.wikipedia.org/wiki/Level_of_measurement) is one such typology of data types.
In this case the R data types largely encode the semantics of the variables; e.g. integer variables are stored as integers, categorical variables with no order are stored as character vectors and so on.
However, that is not always the case.
Instead, the data could have stored the categorical `class` variable as an integer with values 1--7, where the documentation would note that 1 = "compact", 2 = "midsize", and so on.[^factor]
Even though this integer vector could be added, multiplied, subtracted, and divided, those operations would be meaningless.
Fundamentally, categorizing variables as "discrete", "continuous", "ordinal", "nominal", "categorical", etc. is about specifying what operations can be performed on the variables.
Discrete variables support counting and calculating the mode.
Variables with an ordering support sorting and calculating quantiles.
Variables that have an interval scale support addition and subtraction and operations such as taking the mean that rely on these primitives.
In this way, the types of data or variables types is an information class system, something that is beyond the scope of R4DS but discussed in [*Advanced R*](http://adv-r.had.co.nz/OO-essentials.html#s3).
</div>
### Exercise 3.3.3 {.unnumbered .exercise data-number="3.3.3"}
<div class="question">
Map a continuous variable to color, size, and shape.
How do these aesthetics behave differently for categorical vs. continuous variables?
</div>
<div class="answer">
The variable `cty`, city highway miles per gallon, is a continuous variable.
```{r}
ggplot(mpg, aes(x = displ, y = hwy, colour = cty)) +
geom_point()
```
Instead of using discrete colors, the continuous variable uses a scale that varies from a light to dark blue color.
```{r}
ggplot(mpg, aes(x = displ, y = hwy, size = cty)) +
geom_point()
```
When mapped to size, the sizes of the points vary continuously as a function of their size.
```{r error=TRUE}
ggplot(mpg, aes(x = displ, y = hwy, shape = cty)) +
geom_point()
```
When a continuous value is mapped to shape, it gives an error.
Though we could split a continuous variable into discrete categories and use a shape aesthetic, this would conceptually not make sense.
A numeric variable has an order, but shapes do not.
It is clear that smaller points correspond to smaller values, or once the color scale is given, which colors correspond to larger or smaller values. But it is not clear whether a square is greater or less than a circle.
</div>
### Exercise 3.3.4 {.unnumbered .exercise data-number="3.3.4"}
<div class="question">
What happens if you map the same variable to multiple aesthetics?
</div>
<div class="answer">
```{r}
ggplot(mpg, aes(x = displ, y = hwy, colour = hwy, size = displ)) +
geom_point()
```
In the above plot, `hwy` is mapped to both location on the y-axis and color, and `displ` is mapped to both location on the x-axis and size.
The code works and produces a plot, even if it is a bad one.
Mapping a single variable to multiple aesthetics is redundant.
Because it is redundant information, in most cases avoid mapping a single variable to multiple aesthetics.
</div>
### Exercise 3.3.5 {.unnumbered .exercise data-number="3.3.5"}
<div class="question">
What does the stroke aesthetic do?
What shapes does it work with?
(Hint: use `?geom_point`)
</div>
<div class="answer">
Stroke changes the size of the border for shapes (21-25).
These are filled shapes in which the color and size of the border can differ from that of the filled interior of the shape.
For example
```{r ex.3.3.1.5}
ggplot(mtcars, aes(wt, mpg)) +
geom_point(shape = 21, colour = "black", fill = "white", size = 5, stroke = 5)
```
</div>
### Exercise 3.3.6 {.unnumbered .exercise data-number="3.3.6"}
<div class="question">
What happens if you map an aesthetic to something other than a variable name, like `aes(colour = displ < 5)`?
</div>
<div class="answer">
```{r ex.3.3.1.6}
ggplot(mpg, aes(x = displ, y = hwy, colour = displ < 5)) +
geom_point()
```
Aesthetics can also be mapped to expressions like `displ < 5`.
The `ggplot()` function behaves as if a temporary variable was added to the data with values equal to the result of the expression.
In this case, the result of `displ < 5` is a logical variable which takes values of `TRUE` or `FALSE`.
This also explains why, in [Exercise 3.3.1](#exercise-3.3.1), the expression `colour = "blue"` created a categorical variable with only one category: "blue".
</div>
## Common problems {#common-problems .r4ds-section}
`r no_exercises()`
## Facets
### Exercise 3.5.1 {.unnumbered .exercise data-number="3.5.1"}
<div class="question">
What happens if you facet on a continuous variable?
</div>
<div class="answer">
Let's see.
```{r ex.3.5.1}
ggplot(mpg, aes(x = displ, y = hwy)) +
geom_point() +
facet_grid(. ~ cty)
```
The continuous variable is converted to a categorical variable, and the plot contains a facet for each distinct value.
</div>
### Exercise 3.5.2 {.unnumbered .exercise data-number="3.5.2"}
<div class="question">
What do the empty cells in plot with `facet_grid(drv ~ cyl)` mean?
How do they relate to this plot?
```{r results='hide'}
ggplot(data = mpg) +
geom_point(mapping = aes(x = drv, y = cyl))
```
</div>
<div class="answer">
```{r}
ggplot(data = mpg) +
geom_point(mapping = aes(x = hwy, y = cty)) +
facet_grid(drv ~ cyl)
```
The empty cells (facets) in this plot are combinations of `drv` and `cyl` that have no observations.
These are the same locations in the scatter plot of `drv` and `cyl` that have no points.
```{r}
ggplot(data = mpg) +
geom_point(mapping = aes(x = drv, y = cyl))
```
</div>
### Exercise 3.5.3 {.unnumbered .exercise data-number="3.5.3"}
<div class="question">
What plots does the following code make?
What does `.` do?
</div>
<div class="answer">
The symbol `.` ignores that dimension when faceting.
For example, `drv ~ .` facet by values of `drv` on the y-axis.
```{r ex.3.5.1.4.a}
ggplot(data = mpg) +
geom_point(mapping = aes(x = displ, y = hwy)) +
facet_grid(drv ~ .)
```
While, `. ~ cyl` will facet by values of `cyl` on the x-axis.
```{r ex.3.5.1.4.b}
ggplot(data = mpg) +
geom_point(mapping = aes(x = displ, y = hwy)) +
facet_grid(. ~ cyl)
```
</div>
### Exercise 3.5.4 {.unnumbered .exercise data-number="3.5.4"}
<div class="question">
Take the first faceted plot in this section:
```{r}
ggplot(data = mpg) +
geom_point(mapping = aes(x = displ, y = hwy)) +
facet_wrap(~class, nrow = 2)
```
What are the advantages to using faceting instead of the colour aesthetic?
What are the disadvantages?
How might the balance change if you had a larger dataset?
</div>
<div class="answer">
In the following plot the `class` variable is mapped to color.
```{r}
ggplot(data = mpg) +
geom_point(mapping = aes(x = displ, y = hwy, color = class))
```
Advantages of encoding `class` with facets instead of color include the ability to encode more distinct categories.
For me, it is difficult to distinguish between the colors of `"midsize"` and `"minivan"`.
Given human visual perception, the max number of colors to use when encoding
unordered categorical (qualitative) data is nine, and in practice, often much less than that.
Displaying observations from different categories on different scales makes it difficult to directly compare values of observations across categories.
However, it can make it easier to compare the shape of the relationship between the x and y variables across categories.
Disadvantages of encoding the `class` variable with facets instead of the color aesthetic include the difficulty of comparing the values of observations between categories since the observations for each category are on different plots.
Using the same x- and y-scales for all facets makes it easier to compare values of observations across categories, but it is still more difficult than if they had been displayed on the same plot.
Since encoding class within color also places all points on the same plot,
it visualizes the unconditional relationship between the x and y variables;
with facets, the unconditional relationship is no longer visualized since the
points are spread across multiple plots.
The benefit of encoding a variable with facetting over encoding it with color increase in both the number of points and the number of categories.
With a large number of points, there is often overlap.
It is difficult to handle overlapping points with different colors color.
Jittering will still work with color.
But jittering will only work well if there are few points and the classes do not overlap much, otherwise, the colors of areas will no longer be distinct, and it will be hard to pick out the patterns of different categories visually.
Transparency (`alpha`) does not work well with colors since the mixing of overlapping transparent colors will no longer represent the colors of the categories.
Binning methods already use color to encode the density of points in the bin, so color cannot be used to encode categories.
As the number of categories increases, the difference between
colors decreases, to the point that the color of categories will no longer be
visually distinct.
</div>
### Exercise 3.5.5 {.unnumbered .exercise data-number="3.5.5"}
<div class="question">
Read `?facet_wrap`.
What does `nrow` do? What does `ncol` do?
What other options control the layout of the individual panels?
Why doesn’t `facet_grid()` have `nrow` and `ncol` variables?
</div>
<div class="answer">
The arguments `nrow` (`ncol`) determines the number of rows (columns) to use when laying out the facets.
It is necessary since `facet_wrap()` only facets on one variable.
The `nrow` and `ncol` arguments are unnecessary for `facet_grid()` since the number of unique values of the variables specified in the function determines the number of rows and columns.
</div>
### Exercise 3.5.6 {.unnumbered .exercise data-number="3.5.6"}
<div class="question">
When using `facet_grid()` you should usually put the variable with more unique levels in the columns.
Why?
</div>
<div class="answer">
There will be more space for columns if the plot is laid out horizontally (landscape).
</div>
## Geometric objects {#geometric-objects .r4ds-section}
### Exercise 3.6.1 {.unnumbered .exercise data-number="3.6.1"}
<div class="question">
What geom would you use to draw a line chart?
A boxplot?
A histogram?
An area chart?
</div>
<div class="answer">
- line chart: `geom_line()`
- boxplot: `geom_boxplot()`
- histogram: `geom_histogram()`
- area chart: `geom_area()`
</div>
### Exercise 3.6.2 {.unnumbered .exercise data-number="3.6.2"}
<div class="question">
Run this code in your head and predict what the output will look like.
Then, run the code in R and check your predictions.
```{r ex-3-6-2,results='hide'}
ggplot(data = mpg, mapping = aes(x = displ, y = hwy, colour = drv)) +
geom_point() +
geom_smooth(se = FALSE)
```
</div>
<div class="answer">
This code produces a scatter plot with `displ` on the x-axis, `hwy` on the y-axis, and the points colored by `drv`.
There will be a smooth line, without standard errors, fit through each `drv` group.
```{r echo=TRUE}
ggplot(data = mpg, mapping = aes(x = displ, y = hwy, colour = drv)) +
geom_point() +
geom_smooth(se = FALSE)
```
</div>
### Exercise 3.6.3 {.unnumbered .exercise data-number="3.6.3"}
<div class="question">
What does `show.legend = FALSE` do?
What happens if you remove it?
Why do you think I used it earlier in the chapter?
</div>
<div class="answer">
The theme option `show.legend = FALSE` hides the legend box.
Consider this example earlier in the chapter.
```{r}
ggplot(data = mpg) +
geom_smooth(
mapping = aes(x = displ, y = hwy, colour = drv),
show.legend = FALSE
)
```
In that plot, there is no legend.
Removing the `show.legend` argument or setting `show.legend = TRUE` will result in the plot having a legend displaying the mapping between colors and `drv`.
```{r}
ggplot(data = mpg) +
geom_smooth(mapping = aes(x = displ, y = hwy, colour = drv))
```
In the chapter, the legend is suppressed because with three plots,
adding a legend to only the last plot would make the sizes of plots different.
Different sized plots would make it more difficult to see how arguments change the appearance of the plots.
The purpose of those plots is to show the difference between no groups, using a `group` aesthetic, and using a `color` aesthetic, which creates implicit groups.
In that example, the legend isn't necessary since looking up the values associated with each color isn't necessary to make that point.
</div>
### Exercise 3.6.4 {.unnumbered .exercise data-number="3.6.4"}
<div class="question">
What does the `se` argument to `geom_smooth()` do?
</div>
<div class="answer">
It adds standard error bands to the lines.
```{r}
ggplot(data = mpg, mapping = aes(x = displ, y = hwy, colour = drv)) +
geom_point() +
geom_smooth(se = TRUE)
```
By default `se = TRUE`:
```{r}
ggplot(data = mpg, mapping = aes(x = displ, y = hwy, colour = drv)) +
geom_point() +
geom_smooth()
```
</div>
### Exercise 3.6.5 {.unnumbered .exercise data-number="3.6.5"}
<div class="question">
Will these two graphs look different?
Why/why not?
```{r eval=FALSE}
ggplot(data = mpg, mapping = aes(x = displ, y = hwy)) +
geom_point() +
geom_smooth()
ggplot() +
geom_point(data = mpg, mapping = aes(x = displ, y = hwy)) +
geom_smooth(data = mpg, mapping = aes(x = displ, y = hwy))
```
</div>
<div class="answer">
No.
Because both `geom_point()` and `geom_smooth()` will use the same data and mappings.
They will inherit those options from the `ggplot()` object, so the mappings don't need to specified again.
```{r}
ggplot(data = mpg, mapping = aes(x = displ, y = hwy)) +
geom_point() +
geom_smooth()
```
```{r}
ggplot() +
geom_point(data = mpg, mapping = aes(x = displ, y = hwy)) +
geom_smooth(data = mpg, mapping = aes(x = displ, y = hwy))
```
</div>
### Exercise 3.6.6 {.unnumbered .exercise data-number="3.6.6"}
<div class="question">
Recreate the R code necessary to generate the following graphs.
```{r echo=FALSE, fig.width = 3, out.width = "40%", fig.align = "default", purl = FALSE}
knitr::include_graphics("img/visualize/unnamed-chunk-29-1.png")
```
```{r echo=FALSE, fig.width = 3, out.width = "40%", fig.align = "default", purl = FALSE}
knitr::include_graphics("img/visualize/unnamed-chunk-29-2.png")
```
```{r echo=FALSE, fig.width = 3, out.width = "40%", fig.align = "default", purl = FALSE}
knitr::include_graphics("img/visualize/unnamed-chunk-29-3.png")
```
```{r echo=FALSE, fig.width = 3, out.width = "40%", fig.align = "default", purl = FALSE}
knitr::include_graphics("img/visualize/unnamed-chunk-29-4.png")
```
```{r echo=FALSE, fig.width = 3, out.width = "40%", fig.align = "default", purl = FALSE}
knitr::include_graphics("img/visualize/unnamed-chunk-29-5.png")
```
```{r echo=FALSE, fig.width = 3, out.width = "40%", fig.align = "default", purl = FALSE}
knitr::include_graphics("img/visualize/unnamed-chunk-29-6.png")
```
</div>
<div class="answer">
The following code will generate those plots.
```{r message=FALSE}
ggplot(mpg, aes(x = displ, y = hwy)) +
geom_point() +
geom_smooth(se = FALSE)
```
```{r message=FALSE}
ggplot(mpg, aes(x = displ, y = hwy)) +
geom_smooth(mapping = aes(group = drv), se = FALSE) +
geom_point()
```
```{r message=FALSE}
ggplot(mpg, aes(x = displ, y = hwy, colour = drv)) +
geom_point() +
geom_smooth(se = FALSE)
```
```{r message=FALSE}
ggplot(mpg, aes(x = displ, y = hwy)) +
geom_point(aes(colour = drv)) +
geom_smooth(se = FALSE)
```
```{r}
ggplot(mpg, aes(x = displ, y = hwy)) +
geom_point(aes(colour = drv)) +
geom_smooth(aes(linetype = drv), se = FALSE)
```
```{r}
ggplot(mpg, aes(x = displ, y = hwy)) +
geom_point(size = 4, color = "white") +
geom_point(aes(colour = drv))
```
</div>
## Statistical transformations {#statistical-transformations .r4ds-section}
### Exercise 3.7.1 {.unnumbered .exercise data-number="3.7.1"}
<div class="question">
What is the default geom associated with `stat_summary()`?
How could you rewrite the previous plot to use that geom function instead of the stat function?
</div>
<div class="answer">
The "previous plot" referred to in the question is the following.
```{r}
ggplot(data = diamonds) +
stat_summary(
mapping = aes(x = cut, y = depth),
fun.min = min,
fun.max = max,
fun = median
)
```
The arguments `fun.ymin`, `fun.ymax`, and `fun.y` have been deprecated and replaced with `fun.min`, `fun.max`, and `fun` in ggplot2 v 3.3.0.
The default geom for [`stat_summary()`](https://ggplot2.tidyverse.org/reference/stat_summary.html) is `geom_pointrange()`.
The default stat for [`geom_pointrange()`](https://ggplot2.tidyverse.org/reference/geom_linerange.html) is `identity()` but we can add the argument `stat = "summary"` to use `stat_summary()` instead of `stat_identity()`.
```{r}
ggplot(data = diamonds) +
geom_pointrange(
mapping = aes(x = cut, y = depth),
stat = "summary"
)
```
The resulting message says that `stat_summary()` uses the `mean` and `sd` to calculate the middle point and endpoints of the line.
However, in the original plot the min and max values were used for the endpoints.
To recreate the original plot we need to specify values for `fun.min`, `fun.max`, and `fun`.
```{r}
ggplot(data = diamonds) +
geom_pointrange(
mapping = aes(x = cut, y = depth),
stat = "summary",
fun.min = min,
fun.max = max,
fun = median
)
```
</div>
### Exercise 3.7.2 {.unnumbered .exercise data-number="3.7.2"}
<div class="question">
What does `geom_col()` do? How is it different to `geom_bar()`?
</div>
<div class="answer">
The `geom_col()` function has different default stat than `geom_bar()`.
The default stat of `geom_col()` is `stat_identity()`, which leaves the data as is.
The `geom_col()` function expects that the data contains `x` values and `y` values which represent the bar height.
The default stat of `geom_bar()` is `stat_count()`.
The `geom_bar()` function only expects an `x` variable.
The stat, `stat_count()`, preprocesses input data by counting the number of observations for each value of `x`.
The `y` aesthetic uses the values of these counts.
</div>
### Exercise 3.7.3 {.unnumbered .exercise data-number="3.7.3"}
<div class="question">
Most geoms and stats come in pairs that are almost always used in concert.
Read through the documentation and make a list of all the pairs.
What do they have in common?
</div>
<div class="answer">
The following tables lists the pairs of geoms and stats that are almost always used in concert.
| geom | stat |
|----------------------------|----------------------------|
| `geom_bar()` | `stat_count()` |
| `geom_bin2d()` | `stat_bin_2d()` |
| `geom_boxplot()` | `stat_boxplot()` |
| `geom_contour_filled()` | `stat_contour_filled()` |
| `geom_contour()` | `stat_contour()` |
| `geom_count()` | `stat_sum()` |
| `geom_density_2d()` | `stat_density_2d()` |
| `geom_density()` | `stat_density()` |
| `geom_dotplot()` | `stat_bindot()` |
| `geom_function()` | `stat_function()` |
| `geom_sf()` | `stat_sf()` |
| `geom_sf()` | `stat_sf()` |
| `geom_smooth()` | `stat_smooth()` |
| `geom_violin()` | `stat_ydensity()` |
| `geom_hex()` | `stat_bin_hex()` |
| `geom_qq_line()` | `stat_qq_line()` |
| `geom_qq()` | `stat_qq()` |
| `geom_quantile()` | `stat_quantile()` |
Table: Complementary geoms and stats
These pairs of geoms and stats tend to have their names in common, such `stat_smooth()` and `geom_smooth()` and be documented on the same help page.
The pairs of geoms and stats that are used in concert often have each other as the default stat (for a geom) or geom (for a stat).
The following tables contain the geoms and stats in [ggplot2](https://ggplot2.tidyverse.org/reference/) and their defaults as of version 3.3.0.
Many geoms have `stat_identity()` as the default stat.
| geom | default stat | shared docs |
|:---------------------------|:---------------------------|-------------|
| `geom_abline()` | `stat_identity()` | |
| `geom_area()` | `stat_identity()` | |
| `geom_bar()` | `stat_count()` | x |
| `geom_bin2d()` | `stat_bin_2d()` | x |
| `geom_blank()` | None | |
| `geom_boxplot()` | `stat_boxplot()` | x |
| `geom_col()` | `stat_identity()` | |
| `geom_count()` | `stat_sum()` | x |
| `geom_countour_filled()` | `stat_countour_filled()` | x |
| `geom_countour()` | `stat_countour()` | x |
| `geom_crossbar()` | `stat_identity()` | |
| `geom_curve()` | `stat_identity()` | |
| `geom_density_2d_filled()` | `stat_density_2d_filled()` | x |
| `geom_density_2d()` | `stat_density_2d()` | x |
| `geom_density()` | `stat_density()` | x |
| `geom_dotplot()` | `stat_bindot()` | x |
| `geom_errorbar()` | `stat_identity()` | |
| `geom_errorbarh()` | `stat_identity()` | |
| `geom_freqpoly()` | `stat_bin()` | x |
| `geom_function()` | `stat_function()` | x |
| `geom_hex()` | `stat_bin_hex()` | x |
| `geom_histogram()` | `stat_bin()` | x |
| `geom_hline()` | `stat_identity()` | |
| `geom_jitter()` | `stat_identity()` | |
| `geom_label()` | `stat_identity()` | |
| `geom_line()` | `stat_identity()` | |
| `geom_linerange()` | `stat_identity()` | |
| `geom_map()` | `stat_identity()` | |
| `geom_path()` | `stat_identity()` | |
| `geom_point()` | `stat_identity()` | |
| `geom_pointrange()` | `stat_identity()` | |
| `geom_polygon()` | `stat_identity()` | |
| `geom_qq_line()` | `stat_qq_line()` | x |
| `geom_qq()` | `stat_qq()` | x |
| `geom_quantile()` | `stat_quantile()` | x |
| `geom_raster()` | `stat_identity()` | |
| `geom_rect()` | `stat_identity()` | |
| `geom_ribbon()` | `stat_identity()` | |
| `geom_rug()` | `stat_identity()` | |
| `geom_segment()` | `stat_identity()` | |
| `geom_sf_label()` | `stat_sf_coordinates()` | x |
| `geom_sf_text()` | `stat_sf_coordinates()` | x |
| `geom_sf()` | `stat_sf()` | x |
| `geom_smooth()` | `stat_smooth()` | x |
| `geom_spoke()` | `stat_identity()` | |
| `geom_step()` | `stat_identity()` | |
| `geom_text()` | `stat_identity()` | |
| `geom_tile()` | `stat_identity()` | |
| `geom_violin()` | `stat_ydensity()` | x |
| `geom_vline()` | `stat_identity()` | |
Table: ggplot2 geom layers and their default stats.
| stat | default geom | shared docs |
|:----------------------------|:---------------------------|-------------|
| `stat_bin_2d()` | `geom_tile()` | |
| `stat_bin_hex()` | `geom_hex()` | x |
| `stat_bin()` | `geom_bar()` | x |
| `stat_boxplot()` | `geom_boxplot()` | x |
| `stat_count()` | `geom_bar()` | x |
| `stat_countour_filled()` | `geom_contour_filled()` | x |
| `stat_countour()` | `geom_contour()` | x |
| `stat_density_2d_filled()` | `geom_density_2d()` | x |
| `stat_density_2d()` | `geom_density_2d()` | x |
| `stat_density()` | `geom_area()` | |
| `stat_ecdf()` | `geom_step()` | |
| `stat_ellipse()` | `geom_path()` | |
| `stat_function()` | `geom_function()` | x |
| `stat_function()` | `geom_path()` | |
| `stat_identity()` | `geom_point()` | |
| `stat_qq_line()` | `geom_path()` | |
| `stat_qq()` | `geom_point()` | |
| `stat_quantile()` | `geom_quantile()` | x |
| `stat_sf_coordinates()` | `geom_point()` | |
| `stat_sf()` | `geom_rect()` | |
| `stat_smooth()` | `geom_smooth()` | x |
| `stat_sum()` | `geom_point()` | |
| `stat_summary_2d()` | `geom_tile()` | |
| `stat_summary_bin()` | `geom_pointrange()` | |
| `stat_summary_hex()` | `geom_hex()` | |
| `stat_summary()` | `geom_pointrange()` | |
| `stat_unique()` | `geom_point()` | |
| `stat_ydensity()` | `geom_violin()` | x |
Table: ggplot2 stat layers and their default geoms.
</div>
### Exercise 3.7.4 {.unnumbered .exercise data-number="3.7.4"}
<div class="question">
What variables does `stat_smooth()` compute?
What parameters control its behavior?
</div>
<div class="answer">
The function `stat_smooth()` calculates the following variables:
- `y`: predicted value