-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmoving_avg.py
73 lines (53 loc) · 2.49 KB
/
moving_avg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
"""
Desc: This file deals with calculation for the moving average. The class is capable of linking to a database
"""
import datetime
import datetime_funcs
class MovingAverage:
def __init__(self, data_func, time_delta_lookback, time_delta_interval):
# Function to retrieve the data
self.data_func = data_func
# This is the amount of time to calculate the moving average over
self.time_delta_lookback = time_delta_lookback
# Time delta interval to calculate the averages across
self.time_delta_interval = time_delta_interval
def get_data(self):
return self.data_func(self.get_date_range())
def get_date_range(self):
return [datetime.datetime.now() - self.time_delta_lookback, datetime.datetime.now()]
def calculate_simple_moving_average(self):
# Set starting values
avg = 0
count = 0
datetime_interval = None
datetime_list = []
# Setting up generators, this throws away the first data point
data_gen = self.get_data()
start_date = datetime_funcs.parse_datetime(next(data_gen)[1])
datetime_gen = datetime_funcs.increment_datetime_generator(start_date, self.time_delta_interval)
# Loop through data
for i in data_gen:
# Add to variables
avg += i[2]
count += 1
current_datetime = datetime_funcs.parse_datetime(i[1])
datetime_list.append(current_datetime)
# Check if datetime_interval is None
if not datetime_interval:
# Set next datetime_interval
datetime_interval = next(datetime_gen)
# Do this so that datetime_interval does not fall behind current_datetime
if current_datetime >= datetime_interval:
datetime_gen.close()
datetime_gen = datetime_funcs.increment_datetime_generator(current_datetime, self.time_delta_interval)
datetime_interval = current_datetime
# Check if datetime_interval was passed
if current_datetime >= datetime_interval:
avg_datetime = datetime_funcs.average_datetime(datetime_list)
yield [datetime_funcs.display_datetime(avg_datetime), round(avg / count, 2)]
# Reset variables
avg = 0
count = 0
datetime_interval = None
datetime_list = []
def calculate_exponential_moving_average(self): pass